
M A N N I N G

Henrik Brink
Joseph W. Richards

Mark Fetherolf
FOREWORD BY Beau Cronin



Real-World Machine Learning





Real-World
Machine Learning

HENRIK BRINK

JOSEPH W. RICHARDS

MARK FETHEROLF

M A N N I N G
SHELTER ISLAND



For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end. 
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of 
elemental chlorine.

Manning Publications Co. Development editor: Susanna Kline
20 Baldwin Road Technical development editor: Al Scherer
PO Box 761 Review editors: Olivia Booth, Ozren Harlovic
Shelter Island, NY 11964 Project editor: Kevin Sullivan

Copyeditor: Sharon Wilkey
Proofreader: Katie Tennant

Technical proofreader: Valentin Crettaz
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291920
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

www.manning.com


brief contents
PART 1 THE MACHINE-LEARNING WORKFLOW .............................1

1 ■ What is machine learning? 3

2 ■ Real-world data 27

3 ■ Modeling and prediction 52

4 ■ Model evaluation and optimization 77

5 ■ Basic feature engineering 106

PART 2 PRACTICAL APPLICATION ...........................................127

6 ■ Example: NYC taxi data 129

7 ■ Advanced feature engineering 146

8 ■ Advanced NLP example: movie review sentiment 172

9 ■ Scaling machine-learning workflows 196

10 ■ Example: digital display advertising 214
v





contents
foreword xiii
preface xv
acknowledgments xvii
about this book xviii
about the authors xxi
about the cover illustration xxii

PART 1 THE MACHINE-LEARNING WORKFLOW .................1

1 What is machine learning? 3
1.1 Understanding how machines learn 4
1.2 Using data to make decisions 7

 Traditional approaches 8 ■ The machine-learning approach 11
 Five advantages to machine learning 16 ■ Challenges 16

1.3 Following the ML workflow: from data to deployment 17
 Data collection and preparation 18 ■ Learning a model 
 from data 19 ■ Evaluating model performance 20
Optimizing model performance 21
vii



CONTENTSviii
1.4 Boosting model performance with advanced 
techniques 22
Data preprocessing and feature engineering 22 ■ Improving 
models continually with online methods 24 ■ Scaling models with 
data volume and velocity 25

1.5 Summary 25
1.6 Terms from this chapter 25

2 Real-world data 27
2.1 Getting started: data collection 28

Which features should be included? 30 ■ How can we obtain 
ground truth for the target variable? 32 ■ How much training 
data is required? 33 ■ Is the training set representative 
enough? 35

2.2 Preprocessing the data for modeling 36
Categorical features 36 ■ Dealing with missing data 38
Simple feature engineering 40 ■ Data normalization 42

2.3 Using data visualization 43
Mosaic plots 44 ■ Box plots 46 ■ Density plots 48
Scatter plots 50

2.4 Summary 50
2.5 Terms from this chapter 51

3 Modeling and prediction 52
3.1 Basic machine-learning modeling 53

Finding the relationship between input and target 53
The purpose of finding a good model 55 ■ Types of modeling 
methods 56 ■ Supervised versus unsupervised learning 58

3.2 Classification: predicting into buckets 59
Building a classifier and making predictions 61
Classifying complex, nonlinear data 64
Classifying with multiple classes 66

3.3 Regression: predicting numerical values 68
Building a regressor and making predictions 69
Performing regression on complex, nonlinear data 73

3.4 Summary 74
3.5 Terms from this chapter 75



CONTENTS ix
4 Model evaluation and optimization 77
4.1 Model generalization: assessing predictive accuracy for 

new data 78
The problem: overfitting and model optimism 79 ■ The solution: 
cross-validation 82 ■ Some things to look out for when using 
cross-validation 86

4.2 Evaluation of classification models 87
Class-wise accuracy and the confusion matrix 89
Accuracy trade-offs and ROC curves 90 ■ Multiclass 
classification 93

4.3 Evaluation of regression models 96
Using simple regression performance metrics 97
Examining residuals 99

4.4 Model optimization through parameter tuning 100
ML algorithms and their tuning parameters 100
Grid search 101

4.5 Summary 104
4.6 Terms from this chapter 105

5 Basic feature engineering 106
5.1 Motivation: why is feature engineering useful? 107

What is feature engineering? 107 ■ Five reasons to use 
feature engineering 107 ■ Feature engineering and 
domain expertise 109

5.2 Basic feature-engineering processes 110
Example: event recommendation 110 ■ Handling date and 
time features 112 ■ Working with simple text features 114

5.3 Feature selection 116
Forward selection and backward elimination 119 ■ Feature 
selection for data exploration 121 ■ Real-world feature 
selection example 123

5.4 Summary 125
5.5 Terms from this chapter 126



CONTENTSx
PART 2 PRACTICAL APPLICATION ...............................127

6 Example: NYC taxi data 129
6.1 Data: NYC taxi trip and fare information 130

Visualizing the data 130 ■ Defining the problem and 
preparing the data 134

6.2 Modeling 137
Basic linear model 137 ■ Nonlinear classifier 138
Including categorical features 140 ■ Including date-time 
features 142 ■ Model insights 143

6.3 Summary 144
6.4 Terms from this chapter 145

7 Advanced feature engineering 146
7.1 Advanced text features 146

Bag-of-words model 147 ■ Topic modeling 149
Content expansion 152

7.2 Image features 154
Simple image features 154 ■ Extracting objects and shapes 156

7.3 Time-series features 160
Types of time-series data 160 ■ Prediction on time-series 
data 163 ■ Classical time-series features 163
Feature engineering for event streams 168

7.4 Summary 168
7.5 Terms from this chapter 170

8 Advanced NLP example: movie review sentiment 172
8.1 Exploring the data and use case 173

A first glance at the dataset 173 ■ Inspecting the dataset 174
So what’s the use case? 175

8.2 Extracting basic NLP features and building 
the initial model 178
Bag-of-words features 178 ■ Building the model with the naïve 
Bayes algorithm 180 ■ Normalizing bag-of-words features with 
the tf-idf algorithm 184 ■ Optimizing model parameters 185



CONTENTS xi
8.3 Advanced algorithms and model deployment 
considerations 190
Word2vec features 190 ■ Random forest model 192

8.4 Summary 195
8.5 Terms from this chapter 195

9 Scaling machine-learning workflows 196
9.1 Before scaling up 197

Identifying important dimensions 197 ■ Subsampling training 
data in lieu of scaling? 199 ■ Scalable data management 
systems 201

9.2 Scaling ML modeling pipelines 203
Scaling learning algorithms 204

9.3 Scaling predictions 207
Scaling prediction volume 208 ■ Scaling prediction velocity 209

9.4 Summary 211
9.5 Terms from this chapter 212

10 Example: digital display advertising 214
10.1 Display advertising 215
10.2 Digital advertising data 216
10.3 Feature engineering and modeling strategy 216
10.4 Size and shape of the data 218
10.5 Singular value decomposition 220
10.6 Resource estimation and optimization 222
10.7 Modeling 224
10.8 K-nearest neighbors 224
10.9 Random forests 226

10.10 Other real-world considerations 227
10.11 Summary 228
10.12 Terms from this chapter 229
10.13 Recap and conclusion 229

appendix Popular machine-learning algorithms 232

index 236





foreword
Machine learning (ML) has become big business in the last few years: companies are
using it to make money, applied research has exploded in both industrial and aca-
demic settings, and curious developers everywhere are looking to level up their ML
skills. But this newfound demand has largely outrun the supply of good methods for
learning how these techniques are used in the wild. This book fills a pressing need.

 Applied machine learning comprises equal parts mathematical principles and
tricks pulled from a bag—it is, in other words, a true craft. Concentrating too much
on either aspect at the expense of the other is a failure mode. Balance is essential.

 For a long time, the best—and the only—way to learn machine learning was to
pursue an advanced degree in one of the fields that (largely separately) developed sta-
tistical learning and optimization techniques. The focus in these programs was on the
core algorithms, including their theoretical properties and bounds, as well as the char-
acteristic domain problems of the field. In parallel, though, an equally valuable lore was
accumulated and passed down through unofficial channels: conference hallways, the
tribal wisdom of research labs, and the data processing scripts passed between col-
leagues. This lore was what actually allowed the work to get done, establishing which
algorithms were most appropriate in each situation, how the data needed to be mas-
saged at each step, and how to wire up the different parts of the pipeline.

 Cut to today. We now live in an era of open source riches, with high-quality imple-
mentations of most ML algorithms readily available on GitHub, as well as comprehen-
sive and well-architected frameworks to tie all the pieces together. But in the midst of
this abundance, the unofficial lore has remained stubbornly inaccessible. The authors
xiii



FOREWORDxiv
of this book provide a great service by finally bringing this dark knowledge together in
one place; this is a key missing piece as machine learning moves from esoteric aca-
demic discipline to core software engineering skillset.

 Another point worth emphasizing: most of the machine-learning methods in
broad use today are far from perfect, meeting few of the desiderata we might list, were
we in a position to design the perfect solution. The current methods are picky about
the data they will accept. They are, by and large, happy to provide overly confident
predictions if not carefully tended. Small changes in their input can lead to large and
mysterious changes in the models they learn. Their results can be difficult to interpret
and further interrogate. Modern ML engineering can be viewed as an exercise in
managing and mitigating these (and other) rough edges of the underlying optimiza-
tion and statistical learning methods. 

 This book is organized exactly as it should be to prepare the reader for these reali-
ties. It first covers the typical workflow of machine-learning projects before diving into
extended examples that show how this basic framework can be applied in realistic
(read: messy) situations. Skimming through these pages, you’ll find few equations
(they’re all available elsewhere, including the many classic texts in the field) but
instead much of the hidden wisdom on how to go about implementing products and
solutions based on machine learning.

 This is, far and away, the best of times to be learning about this subject, and this
book is an essential complement to the cornucopia of mathematical and formal
knowledge available elsewhere. It is that crucial other book that many old hands wish
they had back in the day.

BEAU CRONIN

HEAD OF DATA, 21 INC.
BERKELEY, CA



preface
As a student of physics and astronomy, I spent a significant proportion of my time
dealing with data from measurements and simulations, with the goal of deriving sci-
entific value by analyzing, visualizing, and modeling the data. With a background as
a programmer, I quickly learned to use my programming skills as an important
aspect of working with data. When I was first introduced to the world of machine
learning, it showed not only great potential as a new tool in the data toolbox, but
also a beautiful combination of the two fields that interested me the most: data sci-
ence and programming.

 Machine learning became an important part of my research in the physical sci-
ences and led me to the UC Berkeley astronomy department, where statisticians, phys-
icists, and computer scientists were working together to understand the universe, with
machine learning as an increasingly important tool.

 At the Center for Time Domain Informatics, I met Joseph Richards, a statistician
and coauthor of this book. We learned not only that we could use our data science and
machine-learning techniques to do scientific research, but also that there was increasing
interest from companies and industries from outside academia. We co-founded Wise.io
with Damian Eads, Dan Starr, and Joshua Bloom to make machine learning accessible
to businesses.

 For the past four years, Wise.io has been working with countless companies to opti-
mize, augment, and automate their processes via machine learning. We built a large-
scale machine-learning application platform that makes hundreds of millions of pre-
dictions every month for our clients, and we learned that data in the real world is
xv
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messy in ways that continue to surprise us. We hope to pass on to you some of our
knowledge of how to work with real-world data and build the next generation of intel-
ligent software with machine learning.

 Mark Fetherolf, our third coauthor, was a founder and CTO of multiple startups
in systems management and business analytics, built on traditional statistical and
quantitative methods. While working on systems to measure and optimize petro-
chemical refining processes, he and his team realized that the techniques they were
using for process manufacturing could be applied to the performance of databases,
computer systems, and networks. Their distributed systems management technolo-
gies are embedded in leading systems management products. Subsequent ventures
were in the measurement and optimization of telecommunications and customer
interaction management systems.

 A few years later, he got hooked on Kaggle competitions and became a machine-
learning convert. He led a cable television recommender project and by necessity
learned a lot about big-data technologies, adapting computational algorithms for
parallel computing, and the ways people respond to recommendations made by
machines. In recent years, he has done consulting work in the application of machine
learning and predictive analytics to the real-world applications of digital advertising,
telecommunications, semiconductor manufacturing, systems management, and cus-
tomer experience optimization.

HENRIK BRINK
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about this book
Real-World Machine Learning is a book for people who want to apply machine learning
(ML) to their own real-world problems. It describes and explains the processes, algo-
rithms, and tools that mainstream ML comprises. The focus is on the practical appli-
cation of well-known algorithms, not building them from scratch. Each step in the
process of building and using ML models is presented and illustrated through exam-
ples that range from simple to intermediate-level complexity.

Roadmap
Part 1, “The machine-learning workflow,” introduces each of the five steps of the basic
machine-learning workflow with a chapter:

■ Chapter 1, “What is machine learning?” introduces the field of machine learn-
ing and what it’s useful for.

■ Chapter 2, “Real-world data,” dives into common data processing and prepara-
tion steps in the ML workflow.

■ Chapter 3, “Modeling and prediction,” introduces how to build simple ML
models and make predictions with widely used algorithms and libraries.

■ Chapter 4, “Model evaluation and optimization,” dives deeper into your ML
models to evaluate and optimize their performance.

■ Chapter 5, “Basic feature engineering,” introduces the most common ways to
augment your raw data with your knowledge of the problem.
xviii
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Part 2, “Practical application,” introduces techniques for scaling your models and
extracting features from text, images, and time-series data to improve performance on
many modern ML problems. This part also includes three full example chapters.

■ Chapter 6, “Example: NYC taxi data,” is the first full example chapter. You’ll try
to predict the tipping behavior of passengers.

■ Chapter 7, “Advanced feature engineering,” covers advanced feature engineer-
ing processes that allow you to extract value out of natural-language text, images,
and time-series data.

■ Chapter 8, “Advanced NLP example: movie review sentiment,” uses your
advanced feature engineering knowledge to try to predict the sentiment of
online movie reviews.

■ Chapter 9, “Scaling machine-learning workflows,” presents techniques for scal-
ing ML systems to larger volumes of data, higher prediction throughput, and
lower prediction latency.

■ Chapter 10, “Example: digital display advertising,” builds a model on large
amounts of data, predicting online digital display advertisement click behavior.

How to use this book
If you’re new to machine learning, chapters 1 through 5 will guide you through the
processes of data preparation and exploration, feature engineering, modeling, and
model evaluation. Our Python examples use the popular data manipulation and
machine-learning libraries pandas and scikit-learn. Chapters 6 through 10 include
three practical machine-learning examples along with advanced topics in feature engi-
neering and optimization. Because the libraries encapsulate most of the complexity,
our code samples can easily be adapted to your own ML applications.

Intended audience
This book will enable programmers, data analysts, statisticians, data scientists, and oth-
ers to apply machine learning to practical problems, or simply to understand it.
They’ll gain practical experience with real-world data, modeling, optimization, and
deployment of machine-learning systems without deep theoretical derivations of spe-
cific algorithms. The mathematical basis of machine learning is discussed for those
who are interested, some algorithms are explained at a high level, and references are
provided for those who would like to dig deeper. The focus is on getting practical
results to solve the problems at hand.

Code conventions, downloads, and software requirements
This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text.
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 Source code listings use Python, pandas, and scikit-learn. iPython notebooks for
each chapter are available on GitHub at https://github.com/brinkar/real-world-
machine-learning and on the Manning website at https://www.manning.com/books/
real-world-machine-learning.

 Notebook files (.ipynb) correspond to each chapter. Sample data is included in a
data directory within the repository so all the notebooks can be executed if the pre-
requisite libraries have been installed along with iPython. Graphics are generated
using the pyplot module of matplotlib and Seaborn.

 In some cases, graphics generated in the iPython notebooks are extracted and pre-
sented as figures in the text. (Some have been modified to improve visual quality in
the print and eBook.)

 Finally, some graphics are best viewed in color. Readers of the black-and-white
print book may wish to refer to the color graphics in the eBook version (available in
PDF, ePub, and Kindle formats), which they can get for free by registering their print
book at https://www.manning.com/books/real-world-machine-learning.

Author Online
Purchase of Real-World Machine Learning includes free access to a private web forum
run by Manning Publications, where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to https://www.manning
.com/books/real-world-machine-learning. This page provides information on how to
get on the forum after you’re registered, what kind of help is available, and the rules
of conduct on the forum. 

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray! 

 The AO forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print. 

https://github.com/brinkar/real-world-machine-learning
https://github.com/brinkar/real-world-machine-learning
https://www.manning.com/books/real-world-machine-learning
https://www.manning.com/books/real-world-machine-learning
https://www.manning.com/books/real-world-machine-learning
https://www.manning.com/books/real-world-machine-learning
https://www.manning.com/books/real-world-machine-learning
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about the cover illustration
The figure on the cover of Real-World Machine Learning is captioned “Chinois Combat-
tant” or “Chinese fighter.” The illustration is taken from a nineteenth-century edition
of Sylvain Maréchal’s four-volume compendium of regional dress customs published
in France. Each illustration is finely drawn and colored by hand. The rich variety of
Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. Whether on city streets, in small towns, or in the countryside, it
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their dress.
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Part 1

The machine-learning
workflow

In this first part of the book, we introduce the basic machine-learning work-
flow. Each chapter covers one step of the workflow.

 Chapter 1 introduces machine learning, what it’s useful for, and why you
should be reading this book.

 In chapter 2, you’ll dive into the data-processing step of the basic ML work-
flow. You’ll look at common ways to clean up and extract value from real-world
and messy data.

 In chapter 3, you’ll start building simple ML models as you learn about a few
modeling algorithms and how they’re used in common implementations.

 In chapter 4, you’ll take a deeper look at our ML models to evaluate and opti-
mize their performance.

 Chapter 5 is dedicated to basic feature engineering. Extracting features from
data can be an extremely important part of building and optimizing the perfor-
mance of an ML system.





What is machine learning?
In 1959, an IBM computer scientist named Arthur Samuel wrote a computer pro-
gram to play checkers. Each board position was assigned a score based on its likeli-
hood of leading to a win. At first, scores were based on a formula using factors such
as the number of pieces on each side and the number of kings. It worked, but Sam-
uel had an idea about how to improve its performance. He had the program play
thousands of games against itself and used the results to refine the positional scor-
ing. By the mid-1970s, the program had achieved the proficiency of a respectable
amateur player.1

This chapter covers
■ Machine-learning basics
■ Advantages of machine learning over traditional

approaches
■ Overview of the basic machine-learning

workflow
■ Overview of advanced methods for improving

model performance

1 Jonathan Schaeffer, One Jump Ahead: Computer Perfection at Checkers (New York: Springer, 2009). 
3



4 CHAPTER 1 What is machine learning?
 Samuel had written a computer program that was able to improve its own perfor-
mance through experience. It learned—and machine learning (ML) was born. 

 The aim of this book isn’t to describe the gory mathematical details of machine-
learning algorithms (although we’ll peel back a few layers of the onion to provide
insight into the inner workings of the most common ones). Rather, the book’s pri-
mary purpose is to instruct non-experts on important aspects and common challenges
when integrating machine learning into real-world applications and data pipelines. In
this first chapter, we present a real business problem—reviewing loan applications—to
demonstrate the advantages of using machine learning over some of the most com-
mon alternatives. 

1.1 Understanding how machines learn
When we talk about human learning, we distinguish between rote learning, or memori-
zation, and true intelligence. Memorizing a telephone number or a set of instructions is
undoubtedly learning. But when we say learning, we frequently mean something more. 

 When children play in groups, they observe how others respond to their actions.
Their future social behaviors are informed by this experience. But they don’t rewind
and replay their past. Rather, certain recognizable features of their interactions—play-
ground, classroom, Mom, Dad, siblings, friends, strangers, adults, children, indoors,
outdoors—provide clues. They assess each new situation based on the features it has
in common with past situations. Their learning is more than gathering knowledge.
They’re building what might be called insight. 

 Imagine teaching a child the difference between dogs and cats by using flash-
cards. You show a card, the child makes a choice, and you place the card in one of
two piles for right and wrong choices, respectively. As the child practices, his perfor-
mance improves. Interestingly, it isn’t necessary to first teach the child techniques
for cat and dog recognition. Human cognition has built-in classification mecha-
nisms. All that’s needed are examples. After the child is proficient with the flashcards,
he’ll be able to classify not only the images on the flashcards, but also most any cat
or dog image, not to mention the real thing. This ability to generalize, to apply knowl-
edge gained through training to new unseen examples, is a key characteristic of
both human and machine learning.

 Of course, human learning is far more sophisticated than even the most advanced
machine-learning algorithms, but computers have the advantage of greater capacity to
memorize, recall, and process data. Their experience comes in the form of historical
data that’s processed—using the techniques described in this book—to create and
optimize, through experience, algorithms that embody, if not true insight, at least the
ability to generalize.

 Analogies between human and machine learning naturally bring to mind the term
artificial intelligence (AI) and the obvious question, “What’s the difference between AI
and machine learning?” There’s no clear consensus on this matter, but most (not all)
agree that ML is one form of AI, and that AI is a far broader subject encompassing
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such areas as robotics, language processing, and computer vision systems. To increase
the ambiguity even further, machine learning is being applied in many of these adja-
cent AI fields with increasing frequency. We can say that the discipline of machine
learning refers to a specific body of knowledge and an associated set of techniques. It’s fairly
clear what is, and what isn’t, machine learning, whereas the same can’t always be said
for artificial intelligence. Paraphrasing Tom Mitchell’s often-cited definition, a com-
puter program is said to learn if its performance of a certain task, as measured by a
computable score, improves with experience.2

 Kaggle, a machine-learning consultancy, ran a competition for the most accurate
program for classifying whether images depicted a dog or cat.3 Competitors were pro-
vided 25,000 example images for training. Each was labeled to indicate the species
depicted. After all the competitors had trained their algorithms, they were tested on
their ability to classify 12,500 unlabeled test images. 

 When we explain the Kaggle competition to people, they often respond by reflect-
ing on the sorts of rules one might apply to accomplish dog and cat recognition. Cats’
ears are triangular and stand up; dogs’ ears are floppy—but not always. Try to imagine
how you might explain to a person who had never seen a dog or a cat how to tell the
difference, without showing any examples. 

 People use a variety of methods involving shapes, colors, textures, proportions,
and other features to learn, and to generalize, from examples. Machine learning
also employs a variety of strategies, in various combinations, depending on the prob-
lem at hand. 

 These strategies are embodied in collections of algorithms developed over the
course of recent decades by academics and practitioners in disciplines ranging from
statistics, computer science, robotics, and applied mathematics, to online search,
entertainment, digital advertising, and language translation. They are diverse and
have various strengths and weaknesses. Some of them are classifiers. Others predict a
numeric measurement. Some measure the similarity or difference of comparable enti-
ties (for example, people, machines, processes, cats, dogs). What the algorithms have
in common is learning from examples (experience) and the capacity to apply what
they’ve learned to new, unseen cases—the ability to generalize.

 In the cats and dogs competition, during the learning phase, competitors’ pro-
grams tried over and over to perform correct classifications using many algorithms.
In each of the millions of iterations of the learning process, the programs per-
formed the classification, measured their results, and then adjusted the process ever
so slightly, searching for incremental improvements. The winner classified 98.914% of
the unseen test images correctly. That’s pretty good, considering the human error rate

2 Tom Mitchell, Machine Learning (McGraw Hill, 1997), 2. “A computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.”

3 See “Dogs vs. Cats” at www.kaggle.com/c/dogs-vs-cats. 

http://www.kaggle.com/c/dogs-vs-cats


6 CHAPTER 1 What is machine learning?
is around 7%. Figure 1.1 illustrates the process. The machine-learning process ana-
lyzes labeled images and builds a model that is, in turn, used by the recall (prediction)
process to classify unlabeled images. There’s one mislabeled cat in the example.

Please note that what we’ve described here is supervised machine learning, and it’s not
the only type of ML. We discuss other types later. 

 Machine learning can be applied to a wide range of business problems, from fraud
detection, to customer targeting and product recommendation, to real-time industrial
monitoring, sentiment analysis, and medical diagnosis. It can take on problems that
can’t be managed manually because of the huge amount of data that must be pro-
cessed. When applied to large datasets, ML can sometimes find relationships so subtle
that no amount of manual scrutiny would ever discover them. And when many such
“weak” relationships are combined, they become strong predictors.

Cat Dog

Cat Dog

Labeled
training data

Machine-learning
process

Model Recall process

Dog

Cat Cat

Dog Dog

Dog

Test data labeled
by ML recall

Unlabeled
test data

Figure 1.1 Machine-learning process for the cats and dogs competition
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 The process of learning from data, and subsequently using the acquired knowl-
edge to inform future decisions, is extremely powerful. Indeed, machine learning is
rapidly becoming the engine that powers the modern data-driven economy.

 Table 1.1 describes widely used supervised machine-learning techniques and some
of their practical applications. This isn’t an exhaustive list, as the potential use cases
could stretch across several pages.

1.2 Using data to make decisions
In the following example, we describe a real-world business problem that can benefit
from a machine-learning approach. We’ll run through the various alternatives that are
commonly used and demonstrate the advantages of the ML approach.

 Imagine that you’re in charge of a microlending company that provides loans to
individuals who want to start small businesses in troubled communities. Early on, the
company receives a few applications per week, and you’re able in a few days’ time to
manually read each application and do the necessary background checks on each
applicant to decide whether to approve each loan request. The schematic of this pro-
cess is shown in figure 1.2. Your early borrowers are pleased with your short turn-
around time and personal service. Word of your company starts to spread.

 As your company continues to gain popularity, the number of applicants begins
to increase. Soon you’re receiving hundreds of applications per week. You try to stay
up with the increased rate of applications by working extra hours, but the backlog of
applications continues to grow. Some of your applicants grow weary of waiting and
seek loans from your competitors. It’s obvious to you that manually processing each
application by yourself isn’t a sustainable business process and, frankly, isn’t worth
the stress.

Table 1.1 Use cases for supervised machine learning, organized by the type of problem

Problem Description Example use cases

Classification Determine the discrete class 
to which each individual 
belongs, based on input data

Spam filtering, sentiment analysis, fraud detec-
tion, customer ad targeting, churn prediction, 
support case flagging, content personalization, 
detection of manufacturing defects, customer 
segmentation, event discovery, genomics, 
drug efficacy

Regression Predict the real-valued output 
for each individual, based on 
input data

Stock-market prediction, demand forecasting, 
price estimation, ad bid optimization, risk man-
agement, asset management, weather forecast-
ing, sports prediction

Recommendation Predict which alternatives a 
user would prefer

Product recommendation, job recruiting, Netflix 
Prize, online dating, content recommendation

Imputation Infer the values of missing 
input data

Incomplete patient medical records, missing 
customer data, census data
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So what should you do? In this section, you’ll
explore several ways to scale up your application-
vetting process to meet your increasing business
needs. 

1.2.1 Traditional approaches

Let’s explore two traditional data analysis
approaches as applied to the application-vetting
process: manual analysis and business rules. For
each approach, we’ll walk through the process of
implementing the technique and highlight the
ways in which it falls short of enabling you to build
a scalable business.

HIRE MORE ANALYSTS

You decide to hire another analyst to help you out.
You aren’t thrilled with the idea of spending some
of your profit on a new hire, but with a second per-
son vetting applications, you can process roughly
twice as many applications in the same amount of
time. This new analyst allows you to flush out the
application backlog within a week. 

 For the first couple of weeks, the two of you
stay up with demand. Yet the number of applica-
tions continues to grow, doubling within a month
to 1,000 per week. To keep up with this increased
demand, you now must hire two more analysts.
Projecting forward, you determine that this pattern
of hiring isn’t sustainable: all of your increased rev-
enue from new loan applicants is going directly to your new hires instead of to more-
critical areas such as your microlending fund. Hiring more analysts as demand increases
hinders the growth of your business. Further, you find that the hiring process is lengthy
and expensive, sapping your business of more of its revenue. Finally, each new hire is
less experienced and slower at processing applications than the last, and the added
stress of managing a team of individuals is wearing on you.

 Aside from the obvious disadvantage of increased cost, people bring all sorts of
conscious and unconscious biases to the decision-making process. To ensure consis-
tency, you might develop detailed guidelines for the approval process and implement
an extensive training program for new analysts, but this adds still more cost and prob-
ably doesn’t eliminate the bias.

Yes

Approved
loans

No

Rejected
loans

Input data

Application
Application
metadata

• Age
• Gender
• Marital

status
• Occupation

Credit history

• Credit score
• Account
balance

• Age of
account

• Amount of
  savings

Loan approved
by analyst?

Figure 1.2 The loan-approval process
for the microlending example
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EMPLOY BUSINESS RULES

Imagine that of the 1,000 loans whose repayment date has passed, 70% were repaid on
time. This is shown in figure 1.3.

You’re now in a position to begin looking for trends between the applicant data and
incidence of loan repayment. In particular, you perform a manual search for a set of
filtering rules that produces a subset of “good” loans that were primarily paid on time.
Through the process of manually analyzing hundreds of applications, you’ve gained

Input data

Application
Application
metadata

• Age
• Gender
• Marital

status
• Occupation

Credit history

• Credit score
• Account
balance

• Age of
account

• Amount of
savings

Yes No

Approved
loans: 1,000

Loan
approved?

Rejected
loans: 1,500

Loan
repaid?

Yes No

Repaid
loans: 700

 Defaulted
loans: 300

Figure 1.3 After a few months of business and 
2,500 loan applications, 1,000 were approved, 
of which 700 applicants repaid the loan on time 
and the other 300 defaulted. This initial set of 
observed information is critical to start building 
automation into your loan-approval process.
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extensive experience about what makes each application good or bad.4 Through some
introspection and back-testing of loan repayment status, you’ve noticed a few trends
in the credit background checks data:5

■ Most borrowers with a credit line of more than $7,500 defaulted on their loan.
■ Most borrowers who had no checking account repaid their loan on time.

Now you can design a filtering mechanism to pare down the number of applications
that you need to process manually through those two rules.

 Your first filter is to automatically reject any applicant with a credit line of more
than $7,500. Looking through your historical data, you find that 44 of the 86 appli-
cants with a credit line of more than $7,500 defaulted on their loan. Roughly 51% of
these high-credit-line applicants defaulted, compared to 28% of the rest. This filter
seems like a good way to exclude high-risk applicants, but you realize that only 8.6%
(86 out of 1,000) of your accepted applicants had a credit line that was so high, mean-
ing that you’ll still need to manually process more than 90% of applications. You need
to do more filtering to get that number down to something more manageable.

 Your second filter is to automatically accept any applicant who doesn’t have a
checking account. This seems to be an excellent filter, as 348 of the 394 (88%) appli-
cants without a checking account repaid their loans on time. Including this second fil-
ter brings the percentage of applications that are automatically accepted or rejected
up to 45%. Thus, you need to manually analyze only roughly half of the new incoming
applications. Figure 1.4 demonstrates these filtering rules. 

4 You could also use statistical correlation techniques to determine which input data attributes are most
strongly associated with the outcome event of loan repayment.

5 In this example, we use the German Credit Data dataset. You can download this data from http://mng.bz/95r4.

New applications

Filter 1

Filter 2

Yes

Yes

No

No

Applicant has
checking account?

Accept:
348 of 394

(88%) paid on time

Manually analyze:
520 of

1,000 (52%)

Applicant’s existing
credit line is

>$7500?

Reject: 44 of 86
(51%) defaulted

Figure 1.4 Filtering new applications 
through two business rules enables you to 
reduce manual analysis to only 52% of the 
incoming applications.

http://mng.bz/95r4
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With these two business rules, you can scale your business up to twice the amount of
volume without having to hire a second analyst, because you now need to manually
accept or reject only 52% of new applications. Additionally, based on the 1,000 appli-
cations with known outcome, you expect your filtering mechanism to erroneously
reject 42 out of every 1,000 applications (4.2%) and to erroneously accept 46 of every
1,000 applications (4.6%).

 As business grows, you’d like your system to automatically accept or reject a larger
and larger percentage of applications without increasing losses from defaults. To do
this, you again need to add more business rules. You soon encounter several problems:

■ Manually finding effective filters becomes harder and harder—if not impossi-
ble—as the filtering system grows in complexity.

■ The business rules become so complicated and opaque that debugging them
and ripping out old, irrelevant rules becomes virtually impossible.

■ The construction of your rules has no statistical rigor. You’re pretty sure that
better “rules” can be found by better exploration of the data, but can’t know
for sure.

■ As the patterns of loan repayment change over time—perhaps due to changes
in the population of applicants—the system doesn’t adapt to those changes. To
stay up to date, the system needs to be constantly adjusted.

All these drawbacks can be traced to a single debilitating weakness in a business rules
approach: the system doesn’t automatically learn from data. 

 Data-driven systems, from simple statistical models to more-sophisticated machine-
learning workflows, can overcome these problems.

1.2.2 The machine-learning approach

Finally, you decide to look into an entirely automated, data-driven approach to your
microlending application-vetting process. Machine learning is an attractive option
because the completely automated nature of the process will allow your operation to
keep pace with the increasing inflow of applications. Further, unlike business rules,
ML learns the optimal decisions directly from the data without having to arbitrarily hard-
code decision rules. This graduation from rules-based to ML-based decision making
means that your decisions will be more accurate and will improve over time as more
loans are made. You can be sure that your ML system produces optimized decisions
with minimal handholding.

 In machine learning, the data provides the foundation for deriving insights about
the problem at hand. To determine whether to accept each new loan application, ML
uses historical training data to predict the best course of action for each new applica-
tion. To get started with ML for loan approval, you begin by assembling the training
data for the 1,000 loans that have been granted. This training data consists of the
input data for each loan application, along with the known outcome of whether each
loan was repaid on time. The input data, in turn, consists of a set of features—numerical



12 CHAPTER 1 What is machine learning?
or categorical metrics that capture the relevant aspects of each application—such as
the applicant’s credit score, gender, and occupation.

 In figure 1.5 historical data trains the machine-learning model. Then, as new loan
applications come in, predictions of the probability of future repayment are gener-
ated instantaneously from the application data.

ML modeling, then, determines how the input data for each applicant can be used to
best predict the loan outcome. By finding and using patterns in the training set, ML pro-
duces a model (you can think of this as a black box, for now) that produces a predic-
tion of the outcome for each new applicant, based on that applicant’s data.

 The next step is to select an ML algorithm to use. Machine learning comes in many
flavors, ranging from simple statistical models to more-sophisticated approaches. Here,
we compare two examples: the first is a simple parametric model, and the second a
nonparametric ensemble of classification trees. Don’t let the terminology scare you.
Machine learning employs a lot of algorithms and lots of ways to categorize them, as
you’ll soon see. 

 Most traditional statistical business models fall into the first category. These para-
metric models use simple, fixed equations to express the relationship between the
outcome and the inputs. Data is then used to learn the best values of the unknown
terms in the equation. Approaches such as linear regression, logistic regression, and

Labeled training data:
historical applications

Machine-learning
process

Model Recall (prediction)

Unlabeled data:
new applications

Predicted repayment

Actual loan
repayment
(labels)

Figure 1.5 Basic ML workflow, as applied to the microloan example
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autoregressive models all fit under this category. Regression models are covered in
more detail in chapter 3.

 In this example, you could use logistic regression to model the loan-approval pro-
cess. In logistic regression, the logarithm of the odds (the log odds) that each loan is
repaid is modeled as a linear function of the input features. For example, if each new
application contains three relevant features—the applicant’s credit line, education
level, and age—then logistic regression attempts to predict the log odds that the appli-
cant will default on the loan (we’ll call this y) via this equation:

The optimal values of each coefficient of the equation (in this case, 0, 1, 2, and 3)
are learned from the 1,000 training data examples.

 When you can express the relationship between inputs and outputs in a formula
like this one, predicting the output (y) from the inputs (credit line, education level,
and age) is easy. All you have to do is figure out which values of 1, 2, and 3 yield the
best result when using your historical data. 

Log odds
The odds ratio is one way of expressing probability. You’ve undoubtedly heard some-
one say that a (favorite) team’s chance of winning is 3 to 1. Odds are the probability
of success (for example, winning) divided by the probability of failure (losing). Math-
ematically, this can be expressed as follows:

Odds(A) = P(A) / P(~A) = The probability of A divided by the probability of not A

So 3-to-1 odds is equivalent to 0.75 / 0.25 = 3 and log(3) = 0.47712…

If A were a fair coin toss, the odds of heads would be 0.5 / 0.5 = 1. Log(1) = 0. It
turns out that the log(Odds) can take on any real-valued number. A log odds value
near – denotes a highly unlikely event. A value near  indicates near certainty, and
log(1) = 0 indicates an even random change. Using log-odds instead of regular prob-
abilities is a mathematical trick that makes certain computations easier, because
unlike probabilities, they’re not limited to values between 0 and 1.

Coefficients

Constant
Log odds that applicant

will repay loan

y = β0 +  β1* Credit_Line + β2* Education_Level +  β3* Age 



14 CHAPTER 1 What is machine learning?
 But when the relationship between the inputs and the response are complicated,
models such as logistic regression can be limited. Take the dataset in the left panel of
figure 1.6, for example. Here, you have two input features, and the task is to classify
each data point into one of two classes. The two classes are separated in the two-
dimensional feature space by a nonlinear curve, the decision boundary (depicted by the
curve in the figure). In the center panel, you see the result of fitting a logistic regres-
sion model on this dataset. The logistic regression model comes up with a straight line
that separates the two regions, resulting in many classification errors (points in the
wrong region).

The problem here is that the model depicted in the center panel is attempting to
explain a complicated, nonlinear phenomenon with a simple parametric model. The
formal definition of parametric versus nonparametric models is complex and too
mathematical for this book, but the gist is that parametric models work well when you
have prior understanding of the relationship between your inputs and the response
you’re trying to predict. If you know enough about the nonlinear relationship, you
may be able to transform your inputs or response variables so that a parametric model
will still work. For example, if the rate at which a certain disease is observed within a
population is higher for older people, you might find a linear relationship between
the probability of contracting the disease and the square of the subject’s age. But in
the real world, you’re often presented with problems for which such transformations
aren’t possible to guess.
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Figure 1.6 In this two-class classification, individual data points can belong to either the round class or the 
square class. This particular data lies in a two-dimensional feature space having a nonlinear decision boundary 
that separates the classes, denoted by the curve. Whereas a simple statistical model does quite poorly at 
accurately classifying the data (center), an ML model (right) is able to discover the true class boundary with 
little effort.
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 What you need are more flexible models that can automatically discover complex
trends and structure in data without being told what the patterns look like. This is
where nonparametric machine-learning algorithms come to the rescue. In the right-
hand panel of figure 1.6, you see the result of applying a nonparametric learning
algorithm (in this case, a random forest classifier) to the problem. Clearly, the predicted
decision boundary is much closer to the true boundary, and as a result, the classifica-
tion accuracy is much higher than that of the parametric model.

 Because they attain such high levels of accuracy on complicated, high-dimensional,
real-world datasets, nonparametric ML models are the approach of choice for many
data-driven problems. Examples of nonparametric approaches include some of the
most widely used methods in machine learning, such as k-nearest neighbors, kernel
smoothing, support vector machines, decision trees, and ensemble methods. We
describe all of these approaches later in the book, and the appendix provides an over-
view of some important algorithms. Linear algorithms have other properties that
make them attractive in some cases, though. They can be easier to explain and reason
about, and they can be faster to compute and scale to larger datasets.

Returning to the microlending problem, the best choice for scaling up your business
is to employ a nonparametric ML model. The model may find the exact same rules as
those you initially found manually, but chances are that they’ll be slightly different in
order to optimize the statistical gains. Most likely, the ML model will also automati-
cally find other and deeper relationships between input variables and the desired out-
come that you otherwise wouldn’t have thought about. 

 In addition to providing an automated workflow, you may also attain higher accu-
racy, which translates directly to higher business value. Imagine that a nonparametric
ML model yields 25% higher accuracy than a logistic regression approach. In this
case, your ML model will make fewer mistakes on new applications: accepting fewer
applicants who won’t repay their loan and rejecting fewer applicants who would have
repaid their loan. Overall, this means a higher average return on the loans that you do
make, enabling you to make more loans overall and to generate higher revenues for
your business.

 We hope this gives you a taste of the power that machine learning can bring you.
Before we move on to defining our basic machine-learning workflow, we’ll enumerate
a few advantages of machine learning, as well as a few challenges with this approach.

Further reading 
The textbook An Introduction to Statistical Learning by Gareth James et al. (Springer,
2013) provides a detailed introduction to the most commonly used approaches in
machine learning, at a level that’s accessible to readers without a background in sta-
tistics or mathematics. A PDF version is available on the author’s website (www-bcf
.usc.edu/~gareth/ISL/).

http://www-bcf.usc.edu/~gareth/ISL/
http://www-bcf.usc.edu/~gareth/ISL/
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1.2.3 Five advantages to machine learning

To wrap up our discussion of the microlending example, we list some of the most prom-
inent advantages to using a machine-learning system, as compared to the most com-
mon alternatives of manual analysis, hardcoded business rules, and simple statistical
models. The five advantages of machine learning are as follows:

■ Accurate—ML uses data to discover the optimal decision-making engine for your
problem. As you collect more data, the accuracy can increase automatically.

■ Automated—As answers are validated or discarded, the ML model can learn new
patterns automatically. This allows users to embed ML directly into an automated
workflow.

■ Fast—ML can generate answers in a matter of milliseconds as new data streams
in, allowing systems to react in real time.

■ Customizable—Many data-driven problems can be addressed with machine learn-
ing. ML models are custom built from your own data, and can be configured to
optimize whatever metric drives your business.

■ Scalable—As your business grows, ML easily scales to handle increased data
rates. Some ML algorithms can scale to handle large amounts of data on many
machines in the cloud.

1.2.4 Challenges

Naturally, achieving these benefits involves a few challenges. Depending on the size
and shape of the business problem, the degree of attendant difficulty ranges from
child’s-play trivial to Hannibal-crossing-the-Alps colossal. 

 Most prominent is acquiring data in a usable form. It has been estimated that data
scientists spend 80% of their time on data preparation.6 You’ve undoubtedly heard
that businesses capture vastly greater quantities of data than ever before, and they do.
You also may have heard this data referred to as the “exhaust” of business processes. In
other words, our new treasure trove of data wasn’t designed to meet the input needs of
our ML systems. Extracting useful data from the residue can be tedious and messy work.

 A related challenge is formulating the problem so that machine learning can be
applied, and will yield a result that’s actionable and measurable. In our example,
the goal is clear: predict who will repay and who will default. The classification is
easy to apply, and the outcome is easily measured. Fortunately, some real-world
problems are this simple; for example, given everything we know about prospective
customers (and we have a lot of data), predict whether they’ll purchase our product.
This is low-hanging fruit. 

 A more difficult example might be along these lines: find the optimum media mix
and combination of advertising units to increase brand awareness for a new product
line. Simply formulating the problem requires constructing a way of measuring brand

6 Steve Lohr, “For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights,” New York Times, August 17, 2014,
http://mng.bz/7W8n.

http://mng.bz/7W8n
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awareness, an understanding of the alternative media options under consideration, and
data that reflects pertinent experience with the alternatives and associated outcomes.

 When the outcome you’re trying to predict is complicated, choosing the algorithm
and how to apply it may be an enormous effort in itself. Cardiology researchers work-
ing to predict the likelihood of postoperative complications have a mind-boggling set
of data for each patient, but ML algorithms don’t naturally slurp up electrocardiogra-
phy (EKG) data and DNA sequences. Feature engineering is the process of transforming
inputs such as these into predictive features.

 We’d be remiss if we didn’t mention the bane of the predictive modeler’s existence: a
model that fits the training data perfectly, but falls flat on its face when it’s used to do real
predictions on data that isn’t in the training set. The problem is most often overfitting. 

 You’ll see that machine learning can solve a great variety of problems, some much
more easily than others. You may also notice that the value of the solution isn’t always
proportional to the effort required. And indeed, ML isn’t a silver bullet for any prob-
lem. But as you’ll see in this book, machine learning is the perfect choice for many
real-world, data-driven problems.

1.3 Following the ML workflow: from data to deployment
In this section, we introduce the main workflow for integrating machine-learning
models into your applications or data pipelines. The ML workflow has five main com-
ponents: data preparation, model building, evaluation, optimization, and predictions
on new data. The application of these steps has an inherent order, but most real-world
machine-learning applications require revisiting each step multiple times in an itera-
tive process. These five components are detailed in chapters 2 through 4, but we out-
line them in this introduction to whet your appetite for getting started. Figure 1.7
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Chapters 3, 6

New data

Prediction
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Model optimization
Chapters 4, 5, 7, 8

Model building
Chapters 3, 7, 8

Historical data
Chapter 2
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Figure 1.7 The workflow of real-world 
machine-learning systems. From historical 
input data you can build a model using an 
ML algorithm. You then need to evaluate 
the performance of the model, and optimize 
accuracy and scalability to fit your 
requirements. With the final model, you 
can make predictions on new data. 
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outlines this workflow, and the following sections introduce these concepts from top
to bottom. You’ll see this figure a lot throughout the book as we introduce the various
components of the ML workflow.

1.3.1 Data collection and preparation

Collecting and preparing data for machine-learning systems usually entails getting
the data into a tabular format, if it’s not already. Think of the tabular format as a
spreadsheet in which data is distributed in rows and columns, with each row corre-
sponding to an instance or example of interest, and each column representing a mea-
surement on this instance. A few exceptions and variations exist, but it’s fair to say
that most machine-learning algorithms require data in this format. Don’t worry; you’ll
deal with the exceptions as you encounter them. Figure 1.8 shows a simple dataset in
this format.

The first thing to notice about tabular data is that individual columns usually include
the same type of data, and rows typically include data of various types. In figure 1.8,
you can already identify four types of data: Name is a string variable, Age is an integer
variable, Income is a floating-point variable, and Marital status is a categorical variable
(taking on a discrete number of categories). Such a dataset is called heterogeneous (in
contrast to homogeneous), and in chapter 2 we explain how and why we’ll coerce
some of these types of data into other types, depending on the particular machine-
learning algorithm at hand.

 Real-world data can be “messy” in a variety of other ways. Suppose that a particular
measurement is unavailable for an instance in the data-gathering phase, and there’s
no way of going back to find the missing piece of information. In this case, the table
will contain a missing value in one or more cells, and this can complicate both model
building and subsequent predictions. In some cases, humans are involved in the data-
gathering phase, and we all know how easy it is to make mistakes in repetitive tasks
such as data recording. This can lead to some of the data being flat-out wrong, and
you’ll have to be able to handle such scenarios, or at least know how well a particular
algorithm behaves in the presence of misleading data. You’ll look closer at methods
for dealing with missing and misleading data in chapter 2.
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Figure 1.8 In a tabular dataset, rows are called instances and columns represent features.
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1.3.2 Learning a model from data

The first part of building a successful machine-learning system is to ask a question that
can be answered by the data. With this simple Person table, you could build an ML
model that could predict whether a person is married or single. This information
would be useful for showing relevant ads, for example. 

 In this case, you’d use the Marital status variable as the target, or label, and the remain-
ing variables as features. The job of the ML algorithm will then be to find how the set of
input features can successfully predict the target. Then, for people whose marital status
is unknown, you can use the model to predict marital status based on the input variables
for each individual. Figure 1.9 shows this process on our toy dataset.

At this point, think of the ML algorithm as a magical box that performs the mapping
from input features to output data. To build a useful model, you’d need more than
two rows. One of the advantages of machine-learning algorithms, compared with
other widely used methods, is the ability to handle many features. Figure 1.9 shows
only four features, of which the Person ID and Name probably aren’t useful in predict-
ing marital status. Some algorithms are relatively immune to uninformative features,
whereas others may yield higher accuracy if you leave those features out. Chapter 3
presents a closer look at types of algorithms and their performance on various kinds
of problems and datasets. 

 It’s worth noting, however, that valuable information can sometimes be extracted
from seemingly uninformative features. A location feature may not be informative in
itself, for example, but can lead to informative features such as population density.
This type of data enhancement, called feature extraction, is important in real-world ML
projects and is the topic of chapters 5 and 7.

 With our ML model in hand, you can now make predictions on new data—data for
which the target variable is unknown. Figure 1.10 shows this process, using the magic-
box model built in figure 1.9.
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Figure 1.9 The machine-learning modeling process
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The target predictions are returned in the same form as they appeared in the original
data used to learn the model. Using the model to make predictions can be seen as fill-
ing out the blank target column of the new data. Some ML algorithms can also output
the probabilities associated with each class. In our married/single example, a probabi-
listic ML model would output two values for each new person: the probability of this
person being married and the probability of the person being single. 

 We left out a few details on the way here, but in principle you’ve just architected
your first ML system. Every machine-learning system is about building models and
using those models to make predictions. Let’s look at the basic machine-learning
workflow in pseudocode to get another view of how simple it is.

data = load_data("data/people.csv")
model = build_model(data, target="Marital status")
new_data = load_data("data/new_people.csv")
predictions = model.predict(new_data)

Although we haven’t programmed any of these functions yet, the basic structure is in
place. By chapter 3, you’ll understand these steps; the rest of the book (chapters 4
through 10) is about making sure you’re building the best model for the problem
at hand.

1.3.3 Evaluating model performance

Rarely is an ML system put to use without some kind of validation of the performance
of the model. Even though we’ve skipped a lot of details in this chapter, let’s pretend
that you know how to build a model and make predictions. You can now apply a clever
trick to get some sense of how well your model is working before you use it to predict
on new data. 

Listing 1.1 Initial structure of an ML workflow program

Marital status

Single

Married
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1

2

Name

Trent Mosley

Lilly Peters

Age

26

52

Income

67,500

140,000

Marital status

New data with no target

ML model:
predicts the target

variable on new data

Figure 1.10 Using the model for prediction on new data
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 You take out some of the data and pretend that you don’t know the target variable.
You then build a model on the remaining data and use the held-out data (testing
data) to make predictions. Figure 1.11 illustrates this model-testing process.

Let’s also look at the pseudocode for this workflow.

data = load_data(...)
training_data, testing_data = split_data(data)
model = build_model(training_data, target="Marital status")
true_values = testing_data.extract_column("Marital status")
predictions = model.predict(testing_data)
accuracy = compare_predictions(predictions, true_values)

You can now compare the predicted results with the known “true” values to get a feeling
for the accuracy of the model. In the pseudocode, this functionality is hidden behind
the compare_predictions function, and most of chapter 4 is dedicated to understand-
ing how this function looks for various types of machine-learning problems.

1.3.4 Optimizing model performance

The last piece of the essential machine-learning puzzle is also covered in chapter 4:
how to use the results of your model evaluation to go back and make the model better.
You can achieve better model accuracy in three ways:

■ Tuning the model parameters—ML algorithms are configured with parameters spe-
cific to the underlying algorithm, and the optimal value of these parameters
often depends on the type and structure of the data. The value of each parame-
ter, or any of them combined, can have an impact on the performance of the
model. We introduce various ways to find and select the best parameter values,

Listing 1.2 Our ML workflow program with model evaluation

Marital status

Single

Married

Single

Married

Person

1

2

Name

Trent Mosley

Lilly Peters

Age

26

52

Income

67,500

140,000

Marital status

Testing data with target

Predictions
compared to
true values

ML model:
predicts the target

variable on new data

Figure 1.11 When using a testing set to evaluate model performance, you “pretend” that the target 
variable is unknown and compare the predictions with the true values.
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and show how this can help in determining the best algorithm for the dataset
in question.

■ Selecting a subset of features—Many ML problems include a large number of fea-
tures, and the noise from those features can sometimes make it hard for the
algorithm to find the real signal in the data, even though they might still be
informative on their own. For many ML problems, having a lot of data is a good
thing; but it can sometimes be a curse. And because you don’t know before-
hand when this will affect your model performance, you have to carefully deter-
mine the features that make up the most general and accurate model.

■ Preprocessing the data—If you search the internet for machine-learning datasets,
you’ll find easy-to-use datasets that many ML algorithms can be quickly applied
to. Most real-world datasets, however, aren’t in such a clean state, and you’ll
have to perform cleaning and processing, a process widely referred to as data
munging or data wrangling. The dataset may include names that are spelled dif-
ferently, although they refer to the same entity, or have missing or incorrect val-
ues, and these things can hurt the performance of the model. It may sound like
edge cases, but you’ll be surprised how often this happens even in sophisti-
cated, data-driven organizations.

With the machine-learning essentials in place, you’ll look briefly at more-advanced
features in the next section before learning more details about the main components
covered in this section.

1.4 Boosting model performance with advanced techniques

The previous section introduced the essential steps in any real-world machine-learning
project, and now you’ll look at additional techniques often used to improve model
performance even further. Depending on the data and problem at hand, some of
these techniques can provide significant gains in accuracy, but sometimes at the cost
of speed in both training and prediction. These techniques are explained in more
detail in chapters 5 through 10, but this section outlines the main ideas.

1.4.1 Data preprocessing and feature engineering

You’ll look at various kinds of data and how to deal with common types of messiness in
chapter 2. But in addition to this essential data cleaning, you can go a step further and
extract additional value from the data that might improve your model performance. 

 In any problem domain, specific knowledge goes into deciding the data to collect,
and this valuable domain knowledge can also be used to extract value from the col-
lected data, in effect adding to the features of the model before model building. We
call this process feature engineering, and when the previously introduced essential ML
workflow has become second nature to you, you can find yourself spending almost all
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your time in this part of the optimization process. This is also the creative part of
machine learning, where you get to use your knowledge and imagination to come up
with ways to improve the model by digging into the data and extracting hidden value.
You’ll make extensive use of our statistically validated model evaluation and optimiza-
tion steps to distinguish what seemed like a good idea at the time from what is actually
useful. Here are a few important examples of feature engineering:

■ Dates and times—You’ll see a date or time variable in many datasets, but by
themselves they’re not useful for ML algorithms, which tend to require raw
numbers or categories. The information might be valuable, though. If you
want to predict which ad to show, it’ll certainly be important to know the time
of day, the day of the week, and the time of year. With feature engineering,
this information can be extracted from the dates and times and made avail-
able to the model.

Also, when dates and times appear in observations of repetitive activity, such
as a user’s repeated visits to a website over the course of a month or year, they
can be used to compute interval durations that may be predictive. For example,
on a shopping site, users might visit more frequently just prior to making a pur-
chase to review and compare items and prices.

■ Location—Location data, such as latitude/longitude coordinates or location
names, is available in some datasets. This information can sometimes be used in
itself, but you may be able to extract additional information that’s useful for a
specific problem. For example, if you want to predict election results in a county,
you might want to extract the population density, mean income, and poverty
rate to use as numbers in your model.

■ Digital media—This is data such as text, documents, images, and video. The fea-
ture engineering that makes this kind of data usable is the difficult part of proj-
ects like the dogs and cats competition. Edges, shapes, and color spectra are
first extracted from the images. Then these are classified using mathematical
transformations, the output of which is a set of features usable by the classifica-
tion algorithms.

Hopefully it’s clear that feature engineering can be important for real-world ML
projects. Chapters 5 and 7 go into much more detail, introducing specific feature-
engineering techniques; you’ll learn how these techniques feed into your ML work-
flow so your model performance improves without becoming too complex and prone
to overfitting. Figure 1.12 illustrates feature-engineering integration into the larger
ML workflow introduced in section 1.3.
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1.4.2 Improving models continually with online methods

Most traditional ML models are static or only rarely rebuilt. But in many cases, you’ll
have data and predictions flowing back into the system, and you want the model to
improve with time and adapt to changes in the data. Several ML algorithms support this
type of online learning; chapter 8 introduces these algorithms and their potential pitfalls.
Figure 1.13 shows how continual relearning can be integrated into the ML workflow.

AnswersNew data

Prediction

New feature 2 …New feature 1

Modeling

Model optimization

Model building

Historical data

Model evaluation

Figure 1.12 Feature-engineering phase 
inserted in the original ML workflow

AnswersNew data

Prediction

Modeling

Model optimization

Model building

Historical data

Model evaluation

Figure 1.13 In this flow of an online 
ML system, predictions are fed back to 
the model for iterative improvements.



25Terms from this chapter
1.4.3 Scaling models with data volume and velocity

It’s well known that datasets are increasing in size and velocity more quickly than ever.
Datasets for supervised methods, in which the target answers are in the training set,
have traditionally been relatively small because humans were needed in order to
acquire the answers. Today, a lot of data (including answers) is produced directly by
sensors, machines, or computers, and we’re beginning to see requirements for scal-
able ML algorithms in order to handle these data volumes. 

 Chapter 9 presents details of machine-learning methods that are capable of scaling
with growing dataset sizes; you’ll see how they compare to each other and to nonscal-
ing algorithms.

1.5 Summary
This chapter introduced machine learning as a better, more data-driven approach to
making decisions. The main points to take away from this chapter are as follows:

■ Machine-learning algorithms are distinguished from rule-based systems in that
they create their own models based on data. Supervised ML systems generalize
by learning from the features of examples with known results.

■ Machine learning is often more accurate, automated, fast, customizable, and
scalable than manually constructed rule-based systems.

■ Machine-learning challenges include identifying and formulating problems to
which ML can be applied, acquiring and transforming data to make it usable, find-
ing the right algorithms for the problem, feature engineering, and overfitting.

■ The basic machine-learning workflow consists of data preparation, model build-
ing, model evaluation, optimization, and predictions on new data.

■ Online learning models continually relearn by using the results of their predic-
tions to update themselves.

1.6 Terms from this chapter

Word Definition

instance or example A single object, observation, transaction, or record.

target or label The numerical or categorical (label) attribute of interest. This is the variable to 
be predicted for each new instance.

features The input attributes that are used to predict the target. These also may be 
numerical or categorical.

model A mathematical object describing the relationship between the features and 
the target.

training data The set of instances with a known target to be used to fit an ML model.

recall Using a model to predict a target or label.
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In chapter 2, you’ll get into the practical matters of collecting data, preparing it for
machine learning use, and using visualizations to gain the insight needed to choose
the best tools and methods.

supervised machine 
learning

Machine learning in which, given examples for which the output value is 
known, the training process infers a function that relates input values to 
the output.

unsupervised machine 
learning

Machine-learning techniques that don’t rely on labeled examples, but rather 
try to find hidden structure in unlabeled data. 

ML workflow The stages in the ML process: data preparation, model building, evaluation, 
optimization, and prediction.

online machine 
learning

A form of machine learning in which predictions are made, and the model is 
updated, for each new example.

Word Definition



Real-world data
In supervised machine learning, you use data to teach automated systems how to
make accurate decisions. ML algorithms are designed to discover patterns and asso-
ciations in historical training data; they learn from that data and encode that learn-
ing into a model to accurately predict a data attribute of importance for new data.
Training data, therefore, is fundamental in the pursuit of machine learning. With
high-quality data, subtle nuances and correlations can be accurately captured and
high-fidelity predictive systems can be built. But if training data is of poor quality,
the efforts of even the best ML algorithms may be rendered useless.

 This chapter serves as your guide to collecting and compiling training data for
use in the supervised machine-learning workflow (figure 2.1). We give general
guidelines for preparing training data for ML modeling and warn of some of the
common pitfalls. Much of the art of machine learning is in exploring and visualiz-
ing training data to assess data quality and guide the learning process. To that end,

This chapter covers
■ Getting started with machine learning
■ Collecting training data
■ Using data-visualization techniques
■ Preparing your data for ML
27
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we provide an overview of some of the most useful data-visualization techniques.
Finally, we discuss how to prepare a training dataset for ML model building, which is
the subject of chapter 3.

 This chapter uses a real-world machine-learning example: churn prediction. In
business, churn refers to the act of a customer canceling or unsubscribing from a
paid service. An important, high-value problem is to predict which customers are
likely to churn in the near future. If a company has an accurate idea of which cus-
tomers may unsubscribe from their service, then they may intervene by sending a
message or offering a discount. This intervention can save companies millions of
dollars, as the typical cost of new customer acquisition largely outpaces the cost of
intervention on churners. Therefore, a machine-learning solution to churn predic-
tion—whereby those users who are likely to churn are predicted weeks in advance—
can be extremely valuable.

 This chapter also uses datasets that are available online and widely used in machine-
learning books and documentation: Titanic Passengers and Auto MPG datasets.

2.1 Getting started: data collection
To get started with machine learning, the first step is to ask a question that’s suited for
an ML approach. Although ML has many flavors, most real-world problems in machine
learning deal with predicting a target variable (or variables) of interest. In this book, we
cover primarily these supervised ML problems. Questions that are well suited for a
supervised ML approach include the following:

■ Which of my customers will churn this month?
■ Will this user click my advertisement?
■ Is this user account fraudulent?

AnswersNew data

Prediction

Modeling

Model optimization

Model building

Historical data

Model evaluation

Figure 2.1 The basic ML workflow. 
Because this chapter covers data, 
we’ve highlighted the boxes indicating 
historical data and new data.



29Getting started: data collection
■ Is the sentiment of this tweet negative, positive, or neutral?
■ What will demand for my product be next month?

You’ll notice a few commonalities in these questions. First, they all require making
assessments on one or several instances of interest. These instances can be people
(such as in the churn question), events (such as the tweet sentiment question), or
even periods of time (such as in the product demand question). 

 Second, each of these problems has a well-defined target of interest, which in some
cases is binary (churn versus not churn, fraud versus not fraud), in some cases takes
on multiple classes (negative versus positive versus neutral), or even hundreds or thou-
sands of classes (picking a song out of a large library) and in others takes on numeri-
cal values (product demand). Note that in statistics and computer science, the target is
also commonly referred to as the response or dependent variable. These terms may be
used interchangeably.

 Third, each of these problems can have sets of historical data in which the target is
known. For instance, over weeks or months of data collection, you can determine
which of your subscribers churned and which people clicked your ads. With some
manual effort, you can assess the sentiment of different tweets. In addition to known
target values, your historical data files will contain information about each instance
that’s knowable at the time of prediction. These are input features (also commonly
referred to as the explanatory or independent variables). For example, the product usage
history of each customer, along with the customer’s demographics and account infor-
mation, would be appropriate input features for churn prediction. The input features,
together with the known values of the target variable, compose the training set. 

 Finally, each of these questions comes with an implied action if the target were
knowable. For example, if you knew that a user would click your ad, you would bid on
that user and serve the user an ad. Likewise, if you knew precisely your product
demand for the upcoming month, you would position your supply chain to match
that demand. The role of the ML algorithm is to use the training set to determine how
the set of input features can most accurately predict the target variable. The result of
this “learning” is encoded in a machine-learning model. When new instances (with an
unknown target) are observed, their features are fed into the ML model, which gener-
ates predictions on those instances. Ultimately, those predictions enable the end user
to taker smarter (and faster) actions. In addition to producing predictions, the ML
model allows the user to draw inferences about the relationships between the input
features and the target variable.

 Let’s put all this in the context of the churn prediction problem. Imagine that you
work for a telecom company and that the question of interest is, “Which of my current
cell-phone subscribers will unsubscribe in the next month?” Here, each instance is a
current subscriber. Likewise, the target variable is the binary outcome of whether each
subscriber cancelled service during that month. The input features can consist of any
information about each customer that’s knowable at the beginning of the month,
such as the current duration of the account, details on the subscription plan, and



30 CHAPTER 2 Real-world data
usage information such as total number of calls made and minutes used in the previ-
ous month. Figure 2.2 shows the first four rows of an example training set for telecom
churn prediction.

The aim of this section is to give a basic guide for properly collecting training data for
machine learning. Data collection can differ tremendously from industry to industry,
but several common questions and pain points arise when assembling training data.
The following subsections provide a practical guide to addressing four of the most
common data-collection questions: 

■ Which input features should I include?
■ How do I obtain known values of my target variable?
■ How much training data do I need?
■ How do I know if my training data is good enough?

2.1.1 Which features should be included?

In machine-learning problems, you’ll typically have dozens of features that you could
use to predict the target variable. In the telecom churn problem, input attributes
about each customer’s demographics (age, gender, location), subscription plan (sta-
tus, time remaining, time since last renewal, preferred status), and usage (calling his-
tory, text-messaging data and data usage, payment history) may all be available to use
as input features. Only two practical restrictions exist on whether something may be
used as an input feature:

■ The value of the feature must be known at the time predictions are needed (for
example, at the beginning of the month for the telecom churn example).

■ The feature must be numerical or categorical in nature (chapter 5 shows how
non-numerical data can be transformed into features via feature engineering).

Data such as Calling History data streams can be processed into a set of numerical
and/or categorical features by computing summary statistics on the data, such as total
minutes used, ratio of day/night minutes used, ratio of week/weekend minutes used,
and proportion of minutes used in network.
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Figure 2.2 Training data with four instances for the telecom churn problem
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 Given such a broad array of possible features, which should you use? As a simple
rule of thumb, features should be included only if they’re suspected to be related to
the target variable. Insofar as the goal of supervised ML is to predict the target, fea-
tures that obviously have nothing to do with the target should be excluded. For exam-
ple, if a distinguishing identification number was available for each customer, it
shouldn’t be used as an input feature to predict whether the customer will unsub-
scribe. Such useless features make it more difficult to detect the true relationships
(signals) from the random perturbations in the data (noise). The more uninformative
features are present, the lower the signal-to-noise ratio and thus the less accurate (on
average) the ML model will be.

 Likewise, excluding an input feature because it wasn’t previously known to be
related to the target can also hurt the accuracy of your ML model. Indeed, it’s the role
of ML to discover new patterns and relationships in data! Suppose, for instance, that a
feature counting the number of current unopened voicemail messages was excluded
from the feature set. Yet, some small subset of the population has ceased to check
their voicemail because they decided to change carriers in the following month. This
signal would express itself in the data as a slightly increased conditional probability of
churn for customers with a large number of unopened voicemails. Exclusion of that
input feature would deprive the ML algorithm of important information and there-
fore would result in an ML system of lower predictive accuracy. Because ML algo-
rithms are able to discover subtle, nonlinear relationships, features beyond the known,
first-order effects can have a substantial impact on the accuracy of the model.

 In selecting a set of input features to use, you face a trade-off. On one hand, throw-
ing every possible feature that comes to mind (“the kitchen sink”) into the model can
drown out the handful of features that contain any signal with an overwhelming
amount of noise. The accuracy of the ML model then suffers because it can’t distin-
guish true patterns from random noise. On the other extreme, hand-selecting a small
subset of features that you already know are related to the target variable can cause
you to omit other highly predictive features. As a result, the accuracy of the ML model
suffers because the model doesn’t know about the neglected features, which are pre-
dictive of the target.

 Faced with this trade-off, the most practical approach is the following:

1 Include all the features that you suspect to be predictive of the target variable.
Fit an ML model. If the accuracy of the model is sufficient, stop.

2 Otherwise, expand the feature set by including other features that are less obvi-
ously related to the target. Fit another model and assess the accuracy. If perfor-
mance is sufficient, stop.

3 Otherwise, starting from the expanded feature set, run an ML feature selection algo-
rithm to choose the best, most predictive subset of your expanded feature set.

We further discuss feature selection algorithms in chapter 5. These approaches seek
the most accurate model built on a subset of the feature set; they retain the signal in
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the feature set while discarding the noise. Though computationally expensive, they
can yield a tremendous boost in model performance.

 To finish this subsection, it’s important to note that in order to use an input fea-
ture, that feature doesn’t have to be present for each instance. For example, if the
ages of your customers are known for only 75% of your client base, you could still use
age as an input feature. We discuss ways to handle missing data later in the chapter.

2.1.2 How can we obtain ground truth for the target variable?

One of the most difficult hurdles in getting started with supervised machine learning
is the aggregation of training instances with a known target variable. This process
often requires running an existing, suboptimal system for a period of time, until
enough training data is collected. For example, in building out an ML solution for
telecom churn, you first need to sit on your hands and watch over several weeks or
months as some customers unsubscribe and others renew. After you have enough
training instances to build an accurate ML model, you can flip the switch and start
using ML in production.

 Each use case will have a different process by which ground truth—the actual or
observed value of the target variable—can be collected or estimated. For example, con-
sider the following training-data collection processes for a few selected ML use cases:

■ Ad targeting—You can run a campaign for a few days to determine which users
did/didn’t click your ad and which users converted.

■ Fraud detection—You can pore over your past data to figure out which users were
fraudulent and which were legitimate.

■ Demand forecasting—You can go into your historical supply-chain management
data logs to determine the demand over the past months or years.

■ Twitter sentiment—Getting information on the true intended sentiment is con-
siderably harder. You can perform manual analysis on a set of tweets by having
people read and opine on tweets (or use crowdsourcing).

Although the collection of instances of known target variables can be painful, both in
terms of time and money, the benefits of migrating to an ML solution are likely to
more than make up for those losses. Other ways of obtaining ground-truth values of
the target variable include the following:

■ Dedicating analysts to manually look through past or current data to determine
or estimate the ground-truth values of the target

■ Using crowdsourcing to use the “wisdom of crowds” in order to attain estimates
of the target

■ Conducting follow-up interviews or other hands-on experiments with customers
■ Running controlled experiments (for example, A/B tests) and monitoring the

responses

Each of these strategies is labor-intensive, but you can accelerate the learning process
and shorten the time required to collect training data by collecting only target variables
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for the instances that have the most influence on the machine-learning model. One
example of this is a method called active learning. Given an existing (small) training set
and a (large) set of data with unknown response variable, active learning identifies the
subset of instances from the latter set whose inclusion in the training set would yield
the most accurate ML model. In this sense, active learning can accelerate the produc-
tion of an accurate ML model by focusing manual resources. For more information
on active learning and related methods, see the 2009 presentation by Dasgupta and
Langford from ICML.1

2.1.3 How much training data is required?
Given the difficulty of observing and collecting the response variable for data instances,
you might wonder how much training data is required to get an ML model up and
running. Unfortunately, this question is so problem-specific that it’s impossible to give
a universal response or even a rule of thumb.

 These factors determine the amount of training data needed:

■ The complexity of the problem. Does the relationship between the input features
and target variable follow a simple pattern, or is it complex and nonlinear?

■ The requirements for accuracy. If you require only a 60% success rate for your
problem, less training data is required than if you need to achieve a 95% suc-
cess rate.

■ The dimensionality of the feature space. If only two input features are available,
less training data will be required than if there were 2,000 features.

One guiding principle to remember is that, as the training set grows, the models will
(on average) get more accurate. (This assumes that the data remains representative of
the ongoing data-generating process, which you’ll learn more about in the next sec-
tion.) More training data results in higher accuracy because of the data-driven nature
of ML models. Because the relationship between the features and target is learned
entirely from the training data, the more you have, the higher the model’s ability to
recognize and capture more-subtle patterns and relationships.

 Using the telecom data from earlier in the chapter, we can demonstrate how the
ML model improves with more training data and also offer a strategy to assess whether
more training data is required. The telecom training dataset consists of 3,333 instances,
each containing 19 features plus the binary outcome of unsubscribed versus renewed.
Using this data, it’s straightforward to assess whether you need to collect more data.
Do the following:

1 Using the current training set, choose a grid of subsample sizes to try. For exam-
ple, with this telecom training set of 3,333 instances of training data, your grid
could be 500; 1,000; 1,500; 2,000; 2,500; 3,000.

2 For each sample size, randomly draw that many instances (without replacement)
from the training set.

1 See http://videolectures.net/icml09_dasgupta_langford_actl/.

http://videolectures.net/icml09_dasgupta_langford_actl/
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3 With each subsample of training data, build an ML model and assess the accu-
racy of that model (we talk about ML evaluation metrics in chapter 4).

4 Assess how the accuracy changes as a function of sample size. If it seems to level
off at the higher sample sizes, the existing training set is probably sufficient. But
if the accuracy continues to rise for the larger samples, the inclusion of more
training instances would likely boost accuracy.

Alternatively, if you have a clear accuracy target, you can use this strategy to assess
whether that target has been fulfilled by your current ML model built on the existing
training data (in which case it isn’t necessary to amass more training data).

 Figure 2.3 demonstrates how the accuracy of the fitted ML model changes as a
function of the number of training instances used with the telecom dataset. In this
case, it’s clear that the ML model improves as you add training data: moving from 250
to 500 to 750 training examples produces significant improvements in the accuracy
level. Yet, as you increase the number of training instances beyond 2,000, the accuracy
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Figure 2.3 Testing whether the existing sample of 3,333 training instances is enough data to 
build an accurate telecom churn ML model. The black line represents the average accuracy over 
10 repetitions of the assessment routine, and the shaded bands represent the error bands.
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levels off. This is evidence that the ML model won’t improve substantially if you add
more training instances. (This doesn’t mean that significant improvements couldn’t
be made by using more features.)

2.1.4 Is the training set representative enough?

Besides the size of the training set, another important factor for generating accurate
predictive ML models is the representativeness of the training set. How similar are the
instances in the training set to the instances that will be collected in the future?
Because the goal of supervised machine learning is to generate accurate predictions
on new data, it’s fundamental that the training set be representative of the sorts of
instances that you ultimately want to generate predictions for. A training set that con-
sists of a nonrepresentative sample of what future data will look like is called sample-
selection bias or covariate shift.

 A training sample could be nonrepresentative for several reasons:

■ It was possible to obtain ground truth for the target variable for only a certain,
biased subsample of data. For example, if instances of fraud in your historical
data were detected only if they cost the company more than $1,000, then a
model trained on that data will have difficulty identifying cases of fraud that
result in losses less than $1,000.

■ The properties of the instances have changed over time. For example, if your
training example consists of historical data on medical insurance fraud, but
new laws have substantially changed the ways in which medical insurers must
conduct their business, then your predictions on the new data may not be
appropriate.

■ The input feature set has changed over time. For example, say the set of loca-
tion attributes that you collect on each customer has changed; you used to col-
lect ZIP code and state, but now collect IP address. This change may require
you to modify the feature set used for the model and potentially discard old
data from the training set.

In each of these cases, an ML model fit to the training data may not extrapolate well
to new data. To borrow an adage: you wouldn’t necessarily want to use your model
trained on apples to try to predict on oranges! The predictive accuracy of the model
on oranges would likely not be good.

 To avoid these problems, it’s important to attempt to make the training set as rep-
resentative of future data as possible. This entails structuring your training-data collec-
tion process in such a way that biases are removed. As we mention in the following
section, visualization can also help ensure that the training data is representative.

 Now that you have an idea of how to collect training data, your next task is to struc-
ture and assemble that data to get ready for ML model building. The next section
shows how to preprocess your training data so you can start building models (the
topic of chapter 3).
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2.2 Preprocessing the data for modeling
Collecting data is the first step toward preparing the data for modeling, but some-
times you must run the data through a few preprocessing steps, depending on the
composition of the dataset. Many machine-learning algorithms work only on numeri-
cal data—integers and real-valued numbers. The simplest ML datasets come in this
format, but many include other types of features, such as categorical variables, and
some have missing values. Sometimes you need to construct or compute features
through feature engineering. Some numeric features may need to be rescaled to
make them comparable or to bring them into line with a frequency distribution (for
example, grading on the normal curve). In this section, you’ll look at these common
data preprocessing steps needed for real-world machine learning.

2.2.1 Categorical features

The most common type of non-numerical feature is the categorical feature. A feature
is categorical if values can be placed in buckets and the order of values isn’t important.
In some cases, this type of feature is easy to identify (for example, when it takes on
only a few string values, such as spam and ham). In other cases, whether a feature is a
numerical (integer) feature or categorical isn’t so obvious. Sometimes either may be
a valid representation, and the choice can affect the performance of the model. An
example is a feature representing the day of the week, which could validly be encoded
as either numerical (number of days since Sunday) or as categorical (the names Mon-
day, Tuesday, and so forth). You aren’t going to look at model building and perfor-
mance until chapters 3 and 4, but this section introduces a technique for dealing with
categorical features. Figure 2.4 points out categorical features in a few datasets.
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Figure 2.4 Identifying categorical features. At the top is the simple Person dataset, which has a Marital 
Status categorical feature. At the bottom is a dataset with information about Titanic passengers. The 
features identified as categorical here are Survived (whether the passenger survived or not), Pclass (what 
class the passenger was traveling on), Gender (male or female), and Embarked (from which city the 
passenger embarked).
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Some machine-learning algorithms use categorical features natively, but generally
they need data in numerical form. You can encode categorical features as numbers
(one number per category), but you can’t use this encoded data as a true categorical
feature because you’ve then introduced an (arbitrary) order of categories. Recall that
one of the properties of categorical features is that they aren’t ordered. Instead, you
can convert each of the categories into a separate binary feature that has value 1 for
instances for which the category appeared, and value 0 when it didn’t. Hence, each
categorical feature is converted to a set of binary features, one per category. Features
constructed in this way are sometimes called dummy variables. Figure 2.5 illustrates this
concept further.

The pseudocode for converting the categorical features in figure 2.5 to binary fea-
tures looks like the following listing. Note that categories is a special NumPy type
(www.numpy.org) such that (data == cat) yields a list of Boolean values.

def cat_to_num(data):
categories = unique(data)
features = []
for cat in categories:

binary = (data == cat)
features.append(binary.astype("int"))

return features

NOTE Readers familiar with the Python programming language may have
noticed that the preceding example isn’t just pseudocode, but also valid
Python. You’ll see this a lot throughout the book: we introduce a code snippet
as pseudocode, but unless otherwise noted, it’s working code. To make the
code simpler, we implicitly import a few helper libraries, such as numpy and
scipy. Our examples will generally work if you include from numpy import *,

Listing 2.1 Convert categorical features to numerical binary features 

Male
Female
Male
Male
Female
Male
Female
Female

Categorical feature
with two categories:
“Male” and “Female” 

Categorical feature
converted to two binary
features: one per category

1
0
1
1
0
1
0
0

MaleGender

0
1
0
0
1
0
1
1

Female

Figure 2.5 Converting 
categorical columns to 
numerical columns

http://www.numpy.org
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and from scipy import *. Note that although this approach is convenient for
trying out examples interactively, you should never use it in real applications,
because the import * construct may cause name conflicts and unexpected
results. All code samples are available for inspection and direct execution in
the accompanying GitHub repository: https://github.com/brinkar/real-world-
machine-learning.

The categorical-to-numerical conversion technique works for most ML algorithms.
But a few algorithms (such as certain types of decision-tree algorithms and related
algorithms such as random forests) can use categorical features natively. This will
often yield better results for highly categorical datasets, and we discuss this further in
the next chapter. Our simple Person dataset, after conversion of the categorical fea-
ture to binary features, is shown in figure 2.6.

2.2.2 Dealing with missing data

You’ve already seen a few examples of datasets with missing data. In tabular datasets,
missing data often appears as empty cells, or cells with NaN (Not a Number), N/A, or
None. Missing data is usually an artifact of the data-collection process; for some rea-
son, a particular value couldn’t be measured for a data instance. Figure 2.7 shows an
example of missing data in the Titanic Passengers dataset.

 There are two main types of missing data, which you need to handle in different
ways. First, for some data, the fact that it’s missing can carry meaningful information that
could be useful for the ML algorithm. The other possibility is that the data is missing
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Figure 2.6 The simple Person dataset after conversion of the categorical Marital Status feature to 
binary numerical features. (The original dataset is shown in figure 2.4.)
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Figure 2.7 The Titanic Passengers dataset has missing values in the Age and Cabin columns. The passenger 
information has been extracted from various historical sources, so in this case the missing values stem from 
information that couldn’t be found in the sources.

https://github.com/brinkar/real-world-machine-learning
https://github.com/brinkar/real-world-machine-learning
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only because its measurement was impossible, and the unavailability of the informa-
tion isn’t otherwise meaningful. In the Titanic Passengers dataset, for example, miss-
ing values in the Cabin column may indicate that those passengers were in a lower
social or economic class, whereas missing values in the Age column carry no useful
information (the age of a particular passenger at the time simply couldn’t be found).

 Let’s first consider the case of informative missing data. When you believe that
information is missing from the data, you usually want the ML algorithm to be able to
use this information to potentially improve the prediction accuracy. To achieve this,
you want to convert the missing values into the same format as the column in general.
For numerical columns, this can be done by setting missing values to –1 or –999,
depending on typical values of non-null values. Pick a number at one end of the
numerical spectrum that will denote missing values, and remember that order is
important for numerical columns. You don’t want to pick a value in the middle of the
distribution of values. 

 For a categorical column with potentially informative missing data, you can create
a new category called Missing, None, or similar, and then handle the categorical fea-
ture in the usual way (for example, using the technique described in the previous sec-
tion). Figure 2.8 shows a simple diagram of what to do with meaningful missing data.

When the absence of a value for a data item has no informative value in itself, you pro-
ceed in a different way. In this case, you can’t introduce a special number or category
because you might introduce data that’s flat-out wrong. For example, if you were to
change any missing values in the Age column of the Titanic Passengers dataset to –1,
you’d probably hurt the model by messing with the age distribution for no good rea-
son. Some ML algorithms will be able to deal with these truly missing values by ignor-
ing them. If not, you need to preprocess the data to either eliminate missing values or
replace them by guessing the true value. This concept of replacing missing data is
called imputation. 

 If you have a large dataset and only a handful of missing values, dropping the
observations with missing data is the easiest approach. But when a larger portion of

Yes

Categorical:
Create a new category

for missing values

Yes

Numerical:
Convert missing values
to meaningful number,
such as –1 and –999

No

Type of data

Does missing data
have meaning?

Figure 2.8 What to do with meaningful missing data
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your observations contain missing values, the loss of perfectly good data in the dropped
observations will reduce the predictive power of your model. Furthermore, if the obser-
vations with missing values aren’t randomly distributed throughout your dataset, this
approach may introduce unexpected bias.

 Another simple approach is to assume some temporal order to the data instances
and replace missing values with the column value of the preceding row. With no other
information, you’re making a guess that a measurement hasn’t changed from one
instance to the next. Needless to say, this assumption will often be wrong, but less
wrong than, for example, filling in zeros for the missing values, especially if the data is
a series of sequential observations (yesterday’s temperature isn’t an unreasonable esti-
mate of today’s). And for extremely big data, you won’t always be able to apply more-
sophisticated methods, and these simple methods can be useful. 

 When possible, it’s usually better to use a larger portion of the existing data to
guess the missing values. You can replace missing column values by the mean or
median value of the column. With no other information, you assume that the average
will be closest to the truth. Depending on the distribution of column values, you
might want to use the median instead; the mean is sensitive to outliers. These are
widely used in machine learning today and work well in many cases. But when you set
all missing values to a single new value, you diminish the visibility of potential correla-
tion with other variables that may be important in order for the algorithm to detect
certain patterns in the data.

 What you want to do, if you can, is use all the data at your disposal to predict the
value of the missing variable. Does this sound familiar? This is exactly what machine
learning is about, so you’re basically thinking about building ML models in order to
be able to build ML models. In practice, you’ll typically use a simple algorithm (such
as linear or logistic regression, described in chapter 3) to impute the missing data.
This isn’t necessarily the same as the main ML algorithm used. In any case, you’re cre-
ating a pipeline of ML algorithms that introduces more knobs to turn in order to opti-
mize the model in the end.

 Again, it’s important to realize that there’s no single best way to deal with truly
missing data. We’ve discussed a few ways in this section, and figure 2.9 summarizes the
possibilities.

2.2.3 Simple feature engineering

Chapter 5 covers domain-specific and advanced feature-engineering techniques, but
it’s worth mentioning the basic idea of simple data preprocessing in order to make the
model better.

 You’ll use the Titanic example again in this section. Figure 2.10 presents another
look at part of the data, and in particular the Cabin feature. Without processing, the
Cabin feature isn’t necessarily useful. Some values seem to include multiple cabins,
and even a single cabin wouldn’t seem like a good categorical feature because all cab-
ins would be separate “buckets.” If you want to predict, for example, whether a certain
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Figure 2.9 Full decision diagram for handling missing values when preparing data for ML modeling
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Figure 2.10 In the Titanic Passengers dataset, some Cabin values include multiple cabins, whereas others 
are missing. And cabin identifiers themselves may not be good categorical features.
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passenger survived, living in a particular cabin instead of the neighboring cabin may
not have any predictive power. 

 Living in a particular section of the ship, though, could be important for survival.
For single cabin IDs, you could extract the letter as a categorical feature and the num-
ber as a numerical feature, assuming they denote different parts of the ship. You could
even find a layout map of the Titanic and map each cabin to the level and side of the
ship, ocean-facing versus interior, and so forth. These approaches don’t handle multi-
ple cabin IDs, but because it looks like all multiple cabins are close to each other,
extracting only the first cabin ID should be fine. You could also include the number of
cabins in a new feature, which could also be relevant. 

 All in all, you’ll create three new features from the Cabin feature. The following
listing shows the code for this simple extraction.

def cabin_features(data):
    features = []
    for cabin in data:

cabins = cabin.split(" ")
n_cabins = len(cabins)
# First char is the cabin_char
try:

cabin_char = cabins[0][0]
except IndexError:

cabin_char = "X"
n_cabins = 0

# The rest is the cabin number
try:

cabin_num = int(cabins[0][1:]) 
except:

cabin_num = -1
# Add 3 features for each passanger
features.append( [cabin_char, cabin_num, n_cabins] )

    return features

By now it should be no surprise what we mean by feature engineering : using the existing
features to create new features that increase the value of the original data by applying
our knowledge of the data or domain in question. As mentioned earlier, you’ll look at
advanced feature-engineering concepts and common types of data that need to be
processed to be used by most algorithms. These include free-form text features for
things such as web pages or tweets. Other important features can be extracted from
images, video, and time-series data as well.

2.2.4 Data normalization

Some ML algorithms require data to be normalized, meaning that each individual fea-
ture has been manipulated to reside on the same numeric scale. The value range of a
feature can influence the importance of the feature compared to other features. If

Listing 2.2 Simple feature extraction on Titanic cabins
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one feature has values between 0 and 10, and another has values between 0 and 1, the
weight of the first feature is 10, compared to the second. Sometimes you’ll want to
force a particular feature weight, but typically it’s better to let the ML algorithm figure
out the relative weights of the features. To make sure all features are considered
equally, you need to normalize the data. Often data is normalized to be in the range
from 0 to 1, or from –1 to 1.

 Let’s consider how this normalization is performed. The following code listing
implements this function. For each feature, you want the data to be distributed
between a minimum value (typically –1) and a maximum value (typically +1). To
achieve this, you divide the data by the total range of the data in order to get the data
into the 0–1 range. From here, you can re-extend to the required range (2, in the case
of –1 to +1) by multiplying with this transformed value. At last, you move the starting
point from 0 to the minimum required value (for example, –1).

def normalize_feature(data, f_min=-1.0, f_max=1.0):
    d_min, d_max = min(data), max(data)
    factor = (f_max - f_min) / (d_max - d_min)
    normalized = f_min + (data - d_min)*factor
    return normalized, factor

Note that you return both the normalized data and the factor with which the data was
normalized. You do this because any new data (for example, for prediction) will have
to be normalized in the same way in order to yield meaningful results. This also means
that the ML modeler will have to remember how a particular feature was normalized,
and save the relevant values (factor and minimum value).

 We leave it up to you to implement a function that takes new data, the normaliza-
tion factor, and the normalized minimum value and reapplies the normalization.

 As you expand your data-wrangling toolkit and explore a variety of data, you’ll
begin to see that each dataset has qualities that make it uniquely interesting, and
often challenging. But large collections of data with many variables are hard to fully
understand by looking at tabular representations. Graphical data-visualization tools
are indispensable for understanding the data from which you hope to extract hidden
information.

2.3 Using data visualization
Between data collection/preprocessing and ML model building lies the important
step of data visualization. Data visualization serves as a sanity check of the training fea-
tures and target variable before diving into the mechanics of machine learning and
prediction. With simple visualization techniques, you can begin to explore the rela-
tionship between the input features and the output target variable, which will guide you
in model building and assist in your understanding of the ML model and predictions.

Listing 2.3 Feature normalization
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Further, visualization techniques can tell you how representative the training set is
and inform you of the types of instances that may be lacking.

 This section focuses on methods for visualizing the association between the target
variable and the input features. We recommend four visualization techniques: mosaic
plots, box plots, density plots, and scatter plots. Each technique is appropriate for a
different type (numeric or categorical) of input feature and target variable, as shown
in figure 2.11. 

2.3.1 Mosaic plots

Mosaic plots allow you to visualize the relationship between two or more categorical
variables. Plotting software for mosaic plots is available in R, SAS, Python, and other
scientific or statistical programming languages.

 To demonstrate the utility of mosaic plots, you’ll use one to display the relation-
ship between passenger gender and survival in the Titanic Passengers dataset. The
mosaic plot begins with a square whose sides each have length 1. The square is then

Further reading 
A plethora of books are dedicated to statistical visualization and plotting data. If
you’d like to dive deeper into this topic, check out the following:

■ The classic textbook The Visual Display of Quantitative Information by Edward
Tufte (Graphics Press, 2001) presents a detailed look into visualizing data for
analysis and presentation.

■ For R users, R Graphics Cookbook by Winston Chang (O’Reilly, 2013) covers
data visualization in R, from the basics to advanced topics, with code samples
to follow along.

■ For Python users, Python Data Visualization Cookbook by Igor Milovanović, Dim-
itry Foures, and Giuseppe Vettigli (Packt Publishing, 2015) covers the basics to
get you up and running with Matplotlib.
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divided, by vertical lines, into a set of rectangles whose widths correspond to the pro-
portion of the data belonging to each of the categories of the input feature. For exam-
ple, in the Titanic data, 24% of passengers were female, so you split the unit square
along the x-axis into two rectangles corresponding to a width 24% / 76% of the area.

 Next, each vertical rectangle is split by horizontal lines into subrectangles whose
relative areas are proportional to the percent of instances belonging to each category
of the response variable. For example, of Titanic passengers who were female, 74%
survived (this is the conditional probability of survival, given that the passenger was
female). Therefore, the Female rectangle is split by a horizontal line into two subrect-
angles that contain 74% / 26% of the area of the rectangle. The same is repeated for
the Male rectangle (for males, the breakdown is 19% / 81%).

 What results is a quick visualization of the relationship between gender and sur-
vival. If there is no relationship, the horizontal splits would occur at similar locations
on the y-axis. If a strong relationship exists, the horizontal splits will be far apart. To
enhance the visualization, the rectangles are shade-coded to assess the statistical sig-
nificance of the relationship, compared to independence of the input feature and
response variable, with large negative residuals (“lower count than expected”) shaded
dark gray, and large positive residuals (“higher count than expected”) shaded light
gray; see figure 2.12.
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Figure 2.12 Mosaic plot showing the relationship between gender and survival on the Titanic. The 
visualization shows that a much higher proportion of females (and much smaller proportion of males) survived 
than would have been expected if survival were independent of gender. “Women and children first.”
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This tells you that when building a machine-learning model to predict survival on the
Titanic, gender is an important factor to include. It also allows you to perform a sanity
check on the relationship between gender and survival: indeed, it’s common knowl-
edge that a higher proportion of women survived the disaster. This gives you an extra
layer of assurance that your data is legitimate. Such data visualizations can also help
you interpret and validate your machine-learning models, after they’ve been built.

 Figure 2.13 shows another mosaic plot for survival versus passenger class (first, sec-
ond, and third). As expected, a higher proportion of first-class passengers (and a
lower proportion of third-class passengers) survived the sinking. Obviously, passenger
class is also an important factor in an ML model to predict survival, and the relation-
ship is exactly as you should expect: higher-class passengers had a higher probability
of survival.

2.3.2 Box plots

Box plots are a standard statistical plotting technique for visualizing the distribution of
a numerical variable. For a single variable, a box plot depicts the quartiles of its distri-
bution: the minimum, 25th percentile, median, 75th percentile, and maximum of the
values. Box-plot visualization of a single variable is useful to get insight into the center,
spread, and skew of its distribution of values plus the existence of any outliers.

 You can also use box plots to compare distributions when plotted in parallel. In
particular, they can be used to visualize the difference in the distribution of a numeri-
cal feature as a function of the various categories of a categorical response variable.
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Figure 2.13 Mosaic plot showing the relationship between passenger class and survival on 
the Titanic
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Returning to the Titanic example, you can visualize the difference in ages between
survivors and fatalities by using parallel box plots, as in figure 2.14. In this case, it’s not
clear that any differences exist in the distribution of passenger ages of survivors versus
fatalities, as the two box plots look fairly similar in shape and location.

It’s important to recognize the limitations of visualization techniques. Visualizations
aren’t a substitute for ML modeling! Machine-learning models can find and exploit
subtle relationships hidden deep inside the data that aren’t amenable to being
exposed via simple visualizations. You shouldn’t automatically exclude features whose
visualizations don’t show clear associations with the target variable. These features
could still carry a strong association with the target when used in association with
other input features. For example, although age doesn’t show a clear relationship with
survival, it could be that for third-class passengers, age is an important predictor (per-
haps for third-class passengers, the younger and stronger passengers could make their
way to the deck of the ship more readily than older passengers). A good ML model
will discover and expose such a relationship, and thus the visualization alone isn’t
meant to exclude age as a feature.
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Figure 2.14 Box plot showing the relationship between passenger age and 
survival on the Titanic. No noticeable differences exist between the age 
distributions for survivors versus fatalities. (This alone shouldn’t be a reason to 
exclude age from the ML model, as it may still be a predictive factor.)
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 Figure 2.15 displays box plots exploring the relationship between passenger fare
paid and survival outcome. In the left panel, it’s clear that the distributions of fare paid
are highly skewed (many small values and a few large outliers), making the differences
difficult to visualize. This is remedied by a simple transformation of the fare (square
root, in the right panel), making the differences easy to spot. Fare paid has an obvious
relationship with survival status: those paying higher fares were more likely to survive,
as is expected. Thus, fare amount should be included in the model, as you expect the
ML model to find and exploit this positive association.

2.3.3 Density plots

Now, we move to numerical, instead of categorical, response variables. When the input
variable is categorical, you can use box plots to visualize the relationship between two
variables, just as you did in the preceding section. You can also use density plots.

 Density plots display the distribution of a single variable in more detail than a box
plot. First, a smoothed estimate of the probability distribution of the variable is esti-
mated (typically using a technique called kernel smoothing). Next, that distribution is
plotted as a curve depicting the values that the variable is likely to have. By creating a
single density plot of the response variable for each category that the input feature
takes, you can easily visualize any discrepancies in the values of the response variable
for differences in the categorical input feature. Note that density plots are similar to
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Box plots for Titanic data: Passenger fare versus survival

Figure 2.15 Box plots showing the relationship between passenger fare paid and survival on the Titanic. The 
square-root transformation makes it obvious that passengers who survived paid higher fares, on average.
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histograms, but their smooth nature makes it much simpler to visualize multiple distri-
butions in a single figure.

 In the next example, you’ll use the Auto MPG dataset.2 This dataset contains the
miles per gallon (MPG) attained by each of a large collection of automobiles from
1970–82, plus attributes about each auto, including horsepower, weight, location of
origin, and model year. Figure 2.16 presents a density plot for MPG versus location
of origin (United States, Europe, or Asia). It’s clear from the plot that Asian cars tend
to have higher MPG, followed by European and then American cars. Therefore, loca-
tion should be an important predictor in our model. Further, a few secondary
“bumps” in the density occur for each curve, which may be related to different types
of automobile (for example, truck versus sedan versus hybrid). Thus, extra explora-
tion of these secondary bumps is warranted to understand their nature and to use as a
guide for further feature engineering.

2 The Auto MPG dataset is available at https://archive.ics.uci.edu/ml/datasets/Auto+MPG and is standard in
the R programming language, by entering data(mtcars).
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Density plot for MPG data, by region
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Figure 2.16 Density plot for the Auto MPG dataset, showing the distribution of vehicle MPG for each 
manufacturer region. It’s obvious from the plot that Asian cars tend to have the highest MPG and that 
cars made in the United States have the lowest. Region is clearly a strong indicator of MPG.

https://archive.ics.uci.edu/ml/datasets/Auto+MPG
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2.3.4 Scatter plots

A scatter plot is a simple visualization of the relationship between two numerical vari-
ables and is one of the most popular plotting tools in existence. In a scatter plot, the
value of the feature is plotted versus the value of the response variable, with each
instance represented as a dot. Though simple, scatter plots can reveal both linear and
nonlinear relationships between the input and response variables.

 Figure 2.17 shows two scatter plots: one of car weight versus MPG, and one of car
model year versus MPG. In both cases, clear relationships exist between the input fea-
tures and the MPG of the car, and hence both should be used in modeling. In the left
panel is a clear banana shape in the data, showing a nonlinear decrease in MPG for
increasing vehicle weight. Likewise, the right panel shows an increasing, linear rela-
tionship between MPG and the model year. Both plots clearly indicate that the input
features are useful in predicting MPG, and both have the expected relationship.

2.4 Summary
In this chapter, you’ve looked at important aspects of data in the context of real-world
machine learning: 

■ Steps in compiling your training data include the following:
– Deciding which input features to include
– Figuring out how to obtain ground-truth values for the target variable
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Figure 2.17 Scatter plots for the relationship of vehicle miles per gallon versus vehicle weight (left) and 
vehicle model year (right)
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– Determining when you’ve collected enough training data
– Keeping an eye out for biased or nonrepresentative training data

■ Preprocessing steps for training data include the following:
– Recoding categorical features
– Dealing with missing data
– Feature normalization (for some ML approaches)
– Feature engineering

■ Four useful data visualizations are mosaic plots, density plots, box plots, and
scatter plots:

With our data ready for modeling, let’s now start building machine-learning models!

2.5 Terms from this chapter

Word Definition

dummy variable A binary feature that indicates that an observation is (or isn’t) a member of a category

ground truth The value of a known target variable or label for a training or test set

missing data
imputation

Those features with unknown values for a subset of instances
Replacement of the unknown values of missing data with numerical or categorical 
values

Categorical  Numerical

Categorical Mosaic plots Box plots  

Numerical Density plots Scatter plots  

Response
Variable

Input Feature



Modeling and prediction
The previous chapter covered guidelines and principles of data collection, prepro-
cessing, and visualization. The next step in the machine-learning workflow is to use
that data to begin exploring and uncovering the relationships that exist between
the input features and the target. In machine learning, this process is done by build-
ing statistical models based on the data. This chapter covers the basics required to
understand ML modeling and to start building your own models. In contrast to most
machine-learning textbooks, we spend little time discussing the various approaches
to ML modeling, instead focusing attention on the big-picture concepts. This will
help you gain a broad understanding of machine-learning model building and
quickly get up to speed on building your own models to solve real-world problems.
For those seeking more information about specific ML modeling techniques, please
see the appendix.

This chapter covers
■ Discovering relationships in data through ML

modeling
■ Using models for prediction and inference
■ Building classification models
■ Building regression models
52
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 We begin the chapter with a high-level overview of statistical modeling. This discus-
sion focuses on the big-picture concepts of ML modeling, such as the purpose of mod-
els, the ways in which models are used in practice, and a succinct look at types of
modeling techniques in existence and their relative strengths and weaknesses. From
there, we dive into the two most common machine-learning models: classification and
regression. In these sections, we give more details about how to build models on your
data. We also call attention to a few of the most common algorithms used in practice
in the “Algorithm highlight” boxes scattered throughout the chapter.

3.1 Basic machine-learning modeling
The objective of machine learning is to discover patterns and relationships in data
and to put those discoveries to use. This process of discovery is achieved through the
use of modeling techniques that have been developed over the past 30 years in statis-
tics, computer science, and applied mathematics. These various approaches can range
from simple to tremendously complex, but all share a common goal: to estimate the
functional relationship between the input features and the target variable. 

 These approaches also share a common workflow, as illustrated in figure 3.1: use of
historical data to build and optimize a model that is, in turn, used to make predictions
based on new data. This section prepares you for the practical sections later in the
chapter. You’ll look at the general goal of machine learning modeling in the next sec-
tion, and move on to seeing how the end product can be used and a few important
aspects for differentiating between ML algorithms.

3.1.1 Finding the relationship between input and target

Let’s frame the discussion of ML modeling around an example. Recall the Auto MPG
dataset from chapter 2. The dataset contains metrics about automobiles, such as

AnswersNew data

Prediction

Modeling

Model optimization

Model building

Historical data

Model evaluation

Figure 3.1 The basic ML workflow
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manufacturer region, model year, vehicle weight, horsepower, and number of cylin-
ders. The purpose of the dataset is to understand the relationship between the input
features and a vehicle’s miles per gallon (MPG) rating.

 Input features are typically referred to using the symbol X, with subscripts differen-
tiating inputs when multiple input features exist. For instance, we’ll say that X1 refers
to manufacturer region, X2 to model year, X3 to vehicle weight, and so forth. The col-
lection of all the input features is referred to as the bold X. Likewise, the target vari-
able is typically referred to as Y.

 The relationship between the inputs, X, and output, Y, can be succinctly repre-
sented by this simple formula:

In this equation, f represents the unknown function that relates the input variables to
the target, Y. The goal of ML modeling is to accurately estimate f by using data. The
symbol  represents random noise in the data that’s unrelated to the function f. The
function f is commonly referred to as the signal, whereas the random variable  is
called the noise. The challenge of machine learning is to use data to determine what
the true signal is, while ignoring the noise.

 In the Auto MPG example, the function f describes the true MPG rating for an auto-
mobile as a function of that car’s many input features. If you knew that function per-
fectly, you could know the MPG rating for any car, real or fictional. But you could have
numerous sources of noise, , including (and certainly not limited to) the following:

■ Imperfect measurement of each vehicle’s MPG rating caused by small inaccura-
cies in the measuring devices—measurement noise

■ Variations in the manufacturing process, causing each car in the fleet to have
slightly different MPG measurements—manufacturing process noise

■ Noise in the measurement of the input features, such as weight and horsepower
■ Lack of access to the broader set of features that would exactly determine MPG

Using the noisy data that you have from hundreds of vehicles, the ML approach is to
use modeling techniques to find a good estimate for f. This resultant estimate is
referred to as an ML model. 

Target

Model
or signal

Error
or noise

Explanatory
features X1…Xn

Y = f(X) + ε



55Basic machine-learning modeling
 In sections 3.2 and 3.3, we describe in further detail how these ML modeling tech-
niques work. Indeed, the bulk of the academic literature on machine learning deals
with how to best estimate f. 

3.1.2 The purpose of finding a good model

Assuming that you have a good estimate of f, what next? Machine learning has two
main goals: prediction and inference.

PREDICTION

After you have a model, you can use that model to generate predictions of the target,
Y, for new data, Xnew, by plugging those new features into the model. In mathematical
notation, if fest denotes your machine-learning estimate of f (recall that f denotes the
true relationship between the features and the target), then predictions for new data
can be obtained by plugging the new data into this formula:

Ypred = fest(Xnew)

These predictions can then be used to make decisions about the new data or may be
fed into an automated workflow.

 Going back to the Auto MPG example, suppose that you have an ML model, fest,
that describes the relationship between MPG and the input metrics of an automobile.
Prediction allows you to ask the question, “What would the MPG of a certain automo-
bile with known input metrics be?” Such a predictive ability would be useful for
designing automobiles, because it would allow engineers to assess the MPG rating of
different design concepts and to ensure that the individual concepts meet MPG
requirements.

 Prediction is the most common use of machine-learning systems. Prediction is cen-
tral to many ML use cases, including these:

■ Deciphering handwritten digits or voice recordings
■ Predicting the stock market
■ Forecasting
■ Predicting which users are most likely to click, convert, or buy
■ Predicting which users will need product support and which are likely to

unsubscribe
■ Determining which transactions are fraudulent
■ Making recommendations

Because of the high levels of predictive accuracy attained by machine-learning
approaches and the rapid speed by which ML predictions can be generated, ML is
used every day by thousands of companies for predictive purposes.

INFERENCE

In addition to making predictions on new data, you can use machine-learning models
to better understand the relationships between the input features and the output target.
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A good estimate of f can enable you to answer deep questions about the associations
between the variables at hand. For example:

■ Which input features are most strongly related to the target variable?
■ Are those relationships positive or negative?
■ Is f a simple relationship, or is it a function that’s more nuanced and nonlinear?

These inferences can tell you a lot about the data-generating process and give clues to
the factors driving relationships in the data. Returning to the Auto MPG example, you
can use inference to answer questions such as these: Does manufacturer region have
an effect on MPG? Which of the inputs are most strongly related to MPG? And are
they negatively or positively related? Answers to these questions can give you an idea
of the driving factors in automobile MPG and give clues about how to engineer vehi-
cles with higher MPG. 

3.1.3 Types of modeling methods

Now the time has come to dust off your statistics knowledge and dive into some of the
mathematical details of ML modeling. Don’t worry—we’ll keep the discussion rela-
tively broad and understandable for those without much of a statistics background!

 Statistical modeling has a general trade-off between predictive accuracy and model
interpretability. Simple models are easy to interpret, yet won’t produce accurate pre-
dictions (particularly for complicated relationships). Complex models may produce
accurate predictions, but may be black-box and hard to interpret. 

 In addition, the machine-learning model has two main types: parametric and non-
parametric. The essential difference is that parametric models assume that f takes a
specific functional form, whereas nonparametric models don’t make such strict assump-
tions. Therefore, parametric approaches tend to be simple and interpretable, but less
accurate. Likewise, nonparametric approaches are usually less interpretable but more
accurate across a broad range of problems. Let’s take a closer look at both parametric
and nonparametric approaches to ML modeling.

PARAMETRIC METHODS

The simplest example of a parametric approach is linear regression. In linear regres-
sion, f is assumed to be a linear combination of the numerical values of the inputs.
The standard linear regression model is as follows:

f(X) = 0 + X1 × 1 + X2 × 2 + …

In this equation, the unknown parameters, 0, 1,… can be interpreted as the inter-
cept and slope parameters (with respect to each of the inputs). When you fit a para-
metric model to some data, you estimate the best values of each of the unknown
parameters. Then you can turn around and plug those estimates into the formula for
f(X) along with new data to generate predictions. 

 Other examples of commonly used parametric models include logistic regression,
polynomial regression, linear discriminant analysis, quadratic discriminant analysis,



57Basic machine-learning modeling
(parametric) mixture models, and naïve Bayes (when parametric density estimation is
used). Approaches often used in conjunction with parametric models for model selec-
tion purposes include ridge regression, lasso, and principal components regression.
Further details about some of these methods are given later in this chapter, and a
description of each approach is given in the appendix. 

 The drawback of parametric approaches is that they make strong assumptions
about the true form of the function f. In most real-world problems, f doesn’t assume
such a simple form, especially when there are many input variables (X). In these situa-
tions, parametric approaches will fit the data poorly, leading to inaccurate predictions.
Therefore, most real-world approaches to machine learning depend on nonparametric
machine-learning methods.

NONPARAMETRIC METHODS

In nonparametric models, f doesn’t take a simple, fixed function. Instead, the form and
complexity of f adapts to the complexity of the data. For example, if the relationship
between X and Y is wiggly, a nonparametric approach will choose a function f that
matches the curvy patterns. Likewise, if the relationship between the input and output
variable is smooth, a simple function f will be chosen.

 A simple example of a nonparametric model is a classification tree. A classification
tree is a series of recursive binary decisions on the input features. The classification
tree learning algorithm uses the target variable to learn the optimal series of splits
such that the terminal leaf nodes of the tree contain instances with similar values of
the target.

 Take, for example, the Titanic Passengers dataset. The classification tree algorithm
first seeks the best input feature to split on, such that the resulting leaf nodes contain
passengers who either mostly lived or mostly died. In this case, the best split is on the
sex (male/female) of the passenger. The algorithm continues splitting on other input
features in each of the subnodes until the algorithm can no longer detect any good
subsequent splits.

 Classification trees are nonparametric because the depth and complexity of the
tree isn’t fixed in advance, but rather is learned from the data. If the relationship
between the target variable and the input features is complex and there’s a sufficient
amount of data, then the tree will grow deeper, uncovering more-nuanced patterns.
Figure 3.2 shows two classification trees learned from different subsets of the Titanic
Passengers dataset. In the left panel is a tree learned from only 400 passengers: the
resultant model is simple, consisting of only a single split. In the right panel is a tree
learned from 891 passengers: the larger amount of data enables the model to grow in
complexity and find more-detailed patterns in the data.

 Other examples of nonparametric approaches to machine learning include k-nearest
neighbors, splines, basis expansion methods, kernel smoothing, generalized additive
models, neural nets, bagging, boosting, random forests, and support vector machines.
Again, more details about some of these methods are given later in this chapter, and a
description of each approach is given in the appendix. 
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3.1.4 Supervised versus unsupervised learning

Machine-learning problems fall into two camps: supervised and unsupervised. Super-
vised problems are ones in which you have access to the target variable for a set of
training data, and unsupervised problems are ones in which there’s no identified tar-
get variable.

 All the examples so far in this book fall in the supervised camp. These problems
each contain a target of interest (Did the Titanic passenger survive? Did the customer
churn? What’s the MPG?) and a set of training data with known values of the target.
Indeed, most problems in machine learning are supervised in nature, and most ML
techniques are designed to solve supervised problems. We spend the vast majority of
this book describing how to solve supervised problems.

 In unsupervised learning, you have access to only input features, and don’t have an
associated target variable. So what kinds of analyses can you perform if there’s no tar-
get available? The unsupervised learning approach has two main classes:

■ Clustering—Use the input features to discover natural groupings in the data and
to divide the data into those groups. Methods: k-means, Gaussian mixture mod-
els, and hierarchical clustering.

■ Dimensionality reduction—Transform the input features into a small number of
coordinates that capture most of the variability of the data. Methods: principal
component analysis (PCA), multidimensional scaling, manifold learning.

Both clustering and dimensionality reduction have wide popularity (particularly, k-means
and PCA), yet are often abused and used inappropriately when a supervised approach
is warranted.

Gender = M

Died
207/40

Died
460/93

Lived
36/117

Classification tree: Small amount of data

Gender = M

Age ≥ 6.5

Died
8/1

Lived
0/15

SibSp ≥ 2.5 Lived
9/161

Pclass ≥ 2.5

Lived
48/69

Died
24/3

Fare ≥ 23.35

Classification tree: Large amount of data

Figure 3.2 A decision tree is an example of a nonparametric ML algorithm, because its functional 
form isn’t fixed. The tree model can grow in complexity with larger amounts of data to capture more-
complicated patterns. In each terminal node of the tree, the ratio represents the number of training 
instances in that node that died versus lived.
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  But unsupervised problems do play a significant role in machine learning, often
in support of supervised problems, either to help compile training data for learning
or to derive new input features on which to learn. You’ll return to the topic of unsu-
pervised learning in chapter 8. 

 Now, let’s transition to the more practical aspects of ML modeling. Next we
describe the steps needed to start building models on your own data and the practical
considerations of choosing which algorithm to use. We break up the rest of the chap-
ter into two sections corresponding to the two most common problems in machine
learning: classification and regression. We begin with the topic of classification.

3.2 Classification: predicting into buckets
In machine learning, classification describes the prediction of new data into buckets
(classes) by using a classifier built by the machine-learning algorithm. Spam detec-
tors put email into Spam and No Spam buckets, and handwritten digit recognizers
put images into buckets from 0 through 9, for example. In this section, you’ll learn
how to build classifiers based on the data at hand. Figure 3.3 illustrates the process
of classification.

Let’s again use an example. In chapter 2, you looked at the Titanic Passengers dataset
for predicting survival of passengers onboard the ill-fated ship. Figure 3.4 shows a sub-
set of this data.

Data Classifier

A B

Figure 3.3 A classification process. 
Rectangles and circles are divided by 
a classifier into classes A and B. This 
is a case of binary classification with 
only two classes.
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Figure 3.4 A subset of the Titanic Passengers dataset
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As we’ve previously discussed, typically the best way to start an ML project is to get a
feel for the data by visualizing it. For example, it’s considered common knowledge
that more women than men survived the Titanic, and you can see that this is the case
from the mosaic plot in figure 3.5 (if you’ve forgotten about mosaic plots, look back at
section 2.3.1).

By using the visualization techniques in section 2.3, you can get a feeling for the per-
formance of each feature in the Titanic Passengers dataset. But it’s important to real-
ize that just because a single feature looks good or bad, it doesn’t necessarily show the
performance of the feature in combination with one or more other features. Maybe
the age together with the sex and social status divides the passengers much better than
any single feature. In fact, this is one of the main reasons to use machine-learning algo-
rithms in the first place: to find signals in many dimensions that humans can’t dis-
cover easily.

 The following subsections introduce the methodology for building classification
models and making predictions. You’ll look at a few specific algorithms and the differ-
ence between linear and nonlinear algorithms.

Female Standardized residuals:

Fewer
counts than

expected

<–4 –4:–2 –2:0 0:2 2:4 >4

No difference
from statistical
independence

More
counts than

expected

24% female 76% male

Gender

26% of
females
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74% of
females
survived

N
o

Y
es

Male

Mosaic plot for Titanic data: Gender vs. survival

S
ur

vi
ve

d?

Figure 3.5 Mosaic plot showing overwhelming support for the idea that more women than men survived 
the disaster.
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3.2.1 Building a classifier and making predictions

The first order of business is to choose the classification algorithm to use for building
the classifier. Many algorithms are available, and each has pros and cons for different
data and deployment requirements. The appendix provides a table of algorithms and
a comparison of their properties. You’ll use this table throughout the book for select-
ing algorithms to try for different problems. In this section, the choice of algorithm
isn’t essential; in the next chapter, you’ll learn how to properly measure the perfor-
mance of the algorithm and choose the best for the job.

 The next step is to ready the data for modeling. After exploring some of the fea-
tures in the dataset, you may want to preprocess the data to deal with categorical
features, missing values, and so on (as discussed in chapter 2). The preprocessing
requirements are also dependent on the specific algorithm, and the appendix lists
these requirements for each algorithm. 

 For the Titanic survival model, you’ll start by choosing a simple classification algo-
rithm: logistic regression.1 For logistic regression, you need to do the following:

1 Impute missing values.
2 Expand categorical features. 
3 From chapter 2, you know that the Fare feature is heavily skewed. In this situation,

it’s advantageous (for some ML models) to transform the variable to make the fea-
ture distribution more symmetric and to reduce the potentially harmful impact of
outliers. Here, you’ll choose to transform Fare by taking the square root.

The final dataset that you’ll use for modeling is shown in figure 3.6.

You can now go ahead and build the model by running the data through the logistic
regression algorithm. This algorithm is implemented in the scikit-learn Python pack-
age, and the model-building and prediction code look like the following listing.

1 The regression in logistic regression doesn’t mean it’s a regression algorithm. Logistic regression expands
linear regression with a logistic function to make it suitable for classification.
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Figure 3.6 The first five rows of the Titanic Passengers dataset after processing categorical 
features and missing values, and transforming the Fare variable by taking the square root (see the 
prepare_data function in the source code repository). All features are now numerical, which is 
the preferred format for most ML algorithms.
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Ret
predict

(0 o
from sklearn.linear_model import LogisticRegression as Model 

def train(features, target):
  model = Model()
  model.fit(features, target) 
  return model

def predict(model, new_features):
  preds = model.predict(new_features) 
  return preds

# Assume Titanic data is loaded into titanic_feats, 
# titanic_target and titanic_test
model = train(titanic_feats, titanic_target) 
predictions = predict(model, titanic_test) 

After building the model, you predict the survival of previously unseen passengers
based on their features. The model expects features in the format given in figure 3.6,
so any new passengers will have to be run through exactly the same processes as the
training data. The output of the predict function will be 1 if the passenger is pre-
dicted to survive, and 0 otherwise.

 It’s useful to visualize the classifier by plotting the decision boundary. Given two of
the features in the dataset, you can plot the boundary that separates surviving passen-
gers from the dead, according to the model. Figure 3.7 shows this for the Age and
square-root Fare features.

Listing 3.1 Building a logistic regression classifier with scikit-learn

Imports 
the logistic 
regression 
algorithm

Fits the logistic regression 
algorithm using features 
and target data

Makes predictions on a 
new set of features 
using the model

Returns the model 
built by the algorithm

urns
ions
r 1)

0

20

sqrt
(fare)

10 20 30 40 50 60 70

15

5

10

0

AgeSurvived (actual)
Died (actual)

Classifier
predicts: Survived

Decision
boundary

Classifier
predicts: Died

Figure 3.7 The decision boundary for the Age and sqrt(Fare) features. The diamonds show passengers 
who survived, whereas circles denote passengers who died. The light background denotes the 
combinations of Age and Fare that are predicted to yield survival. Notice that a few instances overlap the 
boundary. The classifier isn’t perfect, but you’re looking in only two dimensions. The algorithm on the full 
dataset finds this decision boundary in 10 dimensions, but that becomes harder to visualize.
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Algorithm highlight: logistic regression
In these “Algorithm highlight” boxes, you’ll take a closer look at the basic ideas
behind the algorithms used throughout the book. This allows curious readers to try
to code up, with some extra research, basic working versions of the algorithms. Even
though we focus mostly on the use of existing packages in this book, understanding
the basics of a particular algorithm can sometimes be important to fully realize the
predictive potential. 

The first algorithm you’ll look at is the logistic regression algorithm, arguably the sim-
plest ML algorithm for classification tasks. It’s helpful to think about the problem as
having only two features and a dataset divided into two classes. Figure 3.7 shows an
example, with the features Age and sqrt(Fare); the target is Survived or Died. To build
the classifier, you want to find the line that best splits the data into the target
classes. A line in two dimensions can be described by two parameters. These two
numbers are the parameters of the model that you need to determine. 

The algorithm then consists of the following steps:

1 You can start the search by picking the parameter values at random, hence plac-
ing a random line in the two-dimensional figure.

2 Measure how well this line separates the two classes. In logistic regression, you
use the statistical deviance for the goodness-of-fit measurement.

3 Guess new values of the parameters and measure the separation power.
4 Repeat until there are no better guesses. This is an optimization procedure that

can be done with a range of optimization algorithms. Gradient descent is a pop-
ular choice for a simple optimization algorithm.

This approach can be extended to more dimensions, so you’re not limited to two fea-
tures in this model. If you’re interested in the details, we strongly encourage you to
research further and try to implement this algorithm in your programming language of
choice. Then look at an implementation in a widely used ML package. We’ve left out
plenty of details, but the preceding steps remain the basis of the algorithm.

Some properties of logistic regression include the following:

■ The algorithm is relatively simple to understand, compared to more-complex algo-
rithms. It’s also computationally simple, making it scalable to large datasets.

■ The performance will degrade if the decision boundary that separates the classes
needs to be highly nonlinear. See section 3.2.2.

■ Logistic regression algorithms can sometimes overfit the data, and you often need
to use a technique called regularization that limits this danger. See section 3.2.2
for an example of overfitting.

Further reading 
If you want to learn more about logistic regression and its use in the real world, check
out Applied Logistic Regression by David Hosmer et al. (Wiley, 2013).
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3.2.2 Classifying complex, nonlinear data

Looking at figure 3.7, you can understand why logistic regression is a linear algorithm:
the decision boundary is a straight line. Of course, your data might not be well sepa-
rated by a straight line, so for such datasets you should use a nonlinear algorithm. But
nonlinear algorithms are typically more demanding computationally and don’t scale
well to large datasets. You’ll look further at the scalability of various types of algo-
rithms in chapter 8.

 Looking again at the appendix, you can pick a nonlinear algorithm for modeling
the Titanic Passengers dataset. A popular method for nonlinear problems is a support
vector machine with a nonlinear kernel. Support vector machines are linear by
nature, but by using a kernel, this model becomes a powerful nonlinear method. You
can change a single line of code in listing 3.1 to use this new algorithm, and the deci-
sion boundary is plotted in figure 3.8:

from sklearn.svm import SVC as Model

You can see that the decision boundary in figure 3.8 is different from the linear one in
figure 3.7. What you see here is a good example of an important concept in machine
learning: overfitting. The algorithm is capable of fitting well to the data, almost at the
single-record level, and you risk losing the ability to make good predictions on new
data that wasn’t included in the training set; the more complex you allow the model to
become, the higher the risk of overfitting.
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Figure 3.8 Nonlinear decision boundary of the Titanic survival support vector 
machine classifier with a nonlinear kernel. The light background denotes the 
combinations of Age and Fare that are predicted to yield survival.
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Usually, you can avoid overfitting a nonlinear model by using model parameters built
into the algorithm. By tweaking the parameters of the model, keeping the data
unchanged, you can obtain a better decision boundary. Note that you’re currently
using intuition to determine when something is overfitting; in chapter 4, you’ll learn
how to use data and statistics to quantify this intuition. For now, you’ll use our (the
authors’) experience and tweak a certain parameter called gamma. You don’t need to
know what gamma is at this point, only that it helps control the risk of overfitting. In
chapter 5, you’ll see how to optimize the model parameters without only guessing at
better values. Setting gamma = 0.1 in the SVM classifier, you obtain the much improved
decision boundary shown in figure 3.9. 

Algorithm highlight: support vector machines
The support vector machine (SVM) algorithm is a popular choice for both linear and
nonlinear problems. It has some interesting theoretical and practical properties that
make it useful in many scenarios. 

The main idea behind the algorithm is, as with logistic regression discussed previously,
to find the line (or equivalent in higher dimensions) that separates the classes opti-
mally. Instead of measuring the distance to all points, SVMs try to find the largest mar-
gin between only the points on either side of the decision line. The idea is that there’s
no reason to worry about points that are well within the boundary, only ones that
are close. In the following image, you can see that lines H1 and H2 are bad separation
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Figure 3.9 Decision boundary of nonlinear RBF-kernel SVM with gamma = 0.1
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3.2.3 Classifying with multiple classes

Up to this point, you’ve looked at classification into only two classes. In some cases,
you’ll have more than two classes. A good real-world example of multiclass classifica-
tion is the handwritten digit recognition problem. Whenever you send old-school mail
to your family, a robot reads the handwritten ZIP code and determines where to send
the letter, and good digit recognition is essential in this process. A public dataset, the

(continued)

boundaries, because the distance to the closest point on both sides of the line isn’t
the largest it can be. H3 is the optimal line.

Although this algorithm is also linear in the sense that the separation boundary is
linear, SVMs are capable of fitting to nonlinear data, as you saw earlier in this sec-
tion. SVMs use a clever technique in order to fit to nonlinear data: the kernel trick. A
kernel is a mathematical construct that can “warp” the space where the data lives.
The algorithm can then find a linear boundary in this warped space, making the
boundary nonlinear in the original space.

Further reading
Hundreds of books have been written about machine-learning algorithms, covering
everything from their theoretical foundation and efficient implementation to their
practical use. If you’re looking for a more rigorous treatment of these topics, we rec-
ommend two classic texts on ML algorithms:

■ The Elements of Statistical Learning: Data Mining, Inference, and Prediction by
Trevor Hastie et al. (Springer, 2009).

■ Pattern Recognition and Machine Learning by Christopher Bishop (Springer, 2007).

X2

X1

H1 H2 H3

An SVM decision boundary (H3) is often 
superior to decision boundaries found by 
other ML algorithms. 
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MNIST database,2 is available for research into these types of problems. This dataset
consists of 60,000 images of handwritten digits. Figure 3.10 shows a few of the hand-
written digit images.

The images are 28 × 28 pixels each, but we convert each image into 282 = 784 features,
one feature for each pixel. In addition to being a multiclass problem, this is also a
high-dimensional problem. The pattern that the algorithm needs to find is a complex
combination of many of these features, and the problem is nonlinear in nature. 

 To build the classifier, you first choose the algorithm to use from the appendix.
The first nonlinear algorithm on the list that natively supports multiclass problems is
the k-nearest neighbors classifier, which is another simple but powerful algorithm for
nonlinear ML modeling. You need to change only one line in listing 3.1 to use the
new algorithm, but you’ll also include a function for getting the full prediction proba-
bilities instead of just the final prediction:

from sklearn.neighbors import KNeighborsClassifier as Model

def predict_probabilities(model, new_features):
  preds = model.predict_proba(new_features)
  return preds

Building the k-nearest neighbors classifier and making predictions on the four digits
shown in figure 3.10, you obtain the table of probabilities shown in figure 3.11.

 You can see that the predictions for digits 1 and 3 are spot on, and there’s only a
small (10%) uncertainty for digit 4. Looking at the second digit (3), it’s not surprising
that this is hard to classify perfectly. This is the main reason to get the full probabilities
in the first place: to be able to take action on things that aren’t perfectly certain. This
is easy to understand in the case of a post office robot routing letters; if the robot is
sufficiently uncertain about some digits, maybe we should have a good old human
look at it before we send it out wrong.

2 You can find the MNIST Database of Handwritten Digits at http://yann.lecun.com/exdb/mnist/.

Figure 3.10 Four randomly chosen handwritten digits from the 
MNIST database

http://yann.lecun.com/exdb/mnist/


68 CHAPTER 3 Modeling and prediction
3.3 Regression: predicting numerical values
Not every machine-learning problem is about putting records into classes. Sometimes
the target variable takes on numerical values—for example, when predicting dollar

Algorithm highlight: k-nearest neighbors
The k-nearest neighbors algorithm is a simple yet powerful nonlinear ML method. It’s
often used when model training should be quick, but predictions are typically slower.
You’ll soon see why this is the case.

The basic idea is that you can classify a new data record by comparing it with sim-
ilar records from the training set. If a dataset record consists of a set of numbers,
ni, you can find the distance between records via the usual distance formula:

. 

When making predictions on new records, you find the closest known record and assign
that class to the new record. This would be a 1-nearest neighbor classifier, as you’re
using only the closest neighbor. Usually you’d use 3, 5, or 9 neighbors and pick the
class that’s most common among neighbors (you use odd numbers to avoid ties).

The training phase is relatively quick, because you index the known records for fast
distance calculations to new data. The prediction phase is where most of the work is
done, finding the closest neighbors from the entire dataset.

The previous simple example uses the usual Euclidean distance metric. You can also
use more-advanced distance metrics, depending on the dataset at hand.

K-nearest neighbors is useful not only for classification, but for regression as well.
Instead of taking the most common class of neighbors, you take the average or
median values of the target values of the neighbors. Section 3.3 further details
regression.
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values in a financial model. We call the act of predicting numerical values regression,
and the model itself a regressor. Figure 3.12 illustrates the concept of regression.

As an example of a regression analysis, you’ll use the Auto MPG dataset introduced in
chapter 2. The goal is to build a model that can predict the average miles per gallon of
a car, given various properties of the car such as horsepower, weight, location of ori-
gin, and model year. Figure 3.13 shows a small subset of this data.

In chapter 2, you discovered useful relationships between the MPG rating, the car
weight, and the model year. These relationships are shown in figure 3.14.

 In the next section, you’ll look at how to build a basic linear regression model to
predict the miles per gallon values of this dataset of vehicles. After successfully
building a basic model, you’ll look at more-advanced algorithms for modeling non-
linear data.

3.3.1 Building a regressor and making predictions

Again, you’ll start by choosing an algorithm to use and getting the data into a suitable
format. Arguably, the linear regression algorithm is the simplest regression algorithm. As
the name indicates, this is a linear algorithm, and the appendix shows the data prepro-
cessing needed in order to use this algorithm. You need to (1) impute missing values
and (2) expand categorical features. Our Auto MPG dataset has no missing values,

Data Regressor

0.5 1.0 1.5 2.0

Figure 3.12 In this regression 
process, the regressor is predicting 
the numerical value of a record.
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but there’s one categorical column: Origin. After expanding the Origin column (as
described in section 2.2.1 in chapter 2), you obtain the data format shown in figure 3.15.

 You can now use the algorithm to build the model. Again, you can use the code
structure defined in listing 3.1 and change this line:

from sklearn.linear_model import LinearRegression as Model

With the model in hand, you can make predictions. In this example, however, you’ll
split the dataset into a training set and a testing set before building the model. In
chapter 4, you’ll learn much more about how to evaluate models, but you’ll use some
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Figure 3.14 Using scatter plots, you can see that Vehicle Weight and Model Year are useful for predicting 
MPG. See chapter 2 for more details.
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simple techniques in this section. By training a model on only some of the data while
holding out a testing set, you can subsequently make predictions on the testing set and
see how close your predictions come to the actual values. If you were training on all the
data and making predictions on some of that training data, you’d be cheating, as
the model is more likely to make good predictions if it’s seen the data while training. 

 Figure 3.16 shows the results of making predictions on a held-out testing set, and
how they compare to the known values. In this example, you train the model on 80%
of the data and use the remaining 20% for testing.

A useful way to compare more than a few rows of predictions is to use our good friend,
the scatter plot, once again. For regression problems, both the actual target values and
the predicted values are numeric. Plotting the predictions against each other in a scatter
plot, introduced in chapter 2, you can visualize how well the predictions follow the
actual values. This is shown for the held-out Auto MPG test set in figure 3.17. This figure

Origin = 2

1

0

0

0

0

Origin = 3

0

0

0

0

0

Origin = 1

0

1

1

1

1

MPG

26.0

23.8

13.0

17.0

16.9

Predicted MPG

27.172795

24.985776

13.601050

15.181120

16.809079
Figure 3.16 Comparing MPG predictions 
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Figure 3.17 A scatter plot of the actual versus predicted values on the held-out 
test set. The diagonal line shows the perfect regressor. The closer all of the 
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shows great prediction performance, as the predictions all fall close to the optimal diag-
onal line. By looking at this figure, you can get a sense of how your ML model might per-
form on new data. In this case, a few of the predictions for higher MPG values seem to
be underestimated, and this may be useful information for you. For example, if you want
to get better at estimating high MPG values, you might need to find more examples of
high MPG vehicles, or you might need to obtain higher-quality data in this regime.

Algorithm highlight: linear regression
Like logistic regression for classification, linear regression is arguably the simplest
and most widely used algorithm for building regression models. The main strengths
are linear scalability and a high level of interpretability. 

This algorithm plots the dataset records as points, with the target variable on the y-axis,
and fits a straight line (or plane, in the case of two or more features) to these points.
The following figure illustrates the process of optimizing the distance from the points
to the straight line of the model.

A straight line can be described by two parameters for lines in two dimensions, and
so on. You know this from the a and b in y = a × x + b from the basic math. These
parameters are fitted to the data, and when optimized, they completely describe the
model and can be used to make predictions on new data.
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the data to any other possible line (such as the dashed line shown).
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3.3.2 Performing regression on complex, nonlinear data

In some datasets, the relationship between features can’t be fitted by a linear model,
and algorithms such as linear regression may not be appropriate if accurate predic-
tions are required. Other properties, such as scalability, may make lower accuracy a
necessary trade-off. Also, there’s no guarantee that a nonlinear algorithm will be more
accurate, as you risk overfitting to the data. As an example of a nonlinear regression
model, we introduce the random forest algorithm. Random forest is a popular method
for highly nonlinear problems for which accuracy is important. As evident in the
appendix, it’s also easy to use, as it requires minimal preprocessing of data. In fig-
ures 3.18 and 3.19, you can see the results of making predictions on the Auto MPG
test set via the random forest model.
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This model isn’t much different from the linear algorithm, at least visually. It’s not
clear which of the algorithms performs the best in terms of accuracy. In the next chap-
ter, you’ll learn how to quantify the performance (often called the accuracy score of the
model) so you can make meaningful measurements of how good the prediction accu-
racy is. 

3.4 Summary
In this chapter, we introduced machine-learning modeling. Here we list the main
takeaways from the chapter:

■ The purpose of modeling is to describe the relationship between the input fea-
tures and the target variable.

■ You can use models either to generate predictions for new data (whose target is
unknown) or to infer the true associations (or lack thereof) present in the data.

Algorithm highlight: random forest
For the last algorithm highlight of this chapter, we introduce the random forest (RF)
algorithm. This highly accurate nonlinear algorithm is widely used in real-world classi-
fication and regression problems.

The basis of the RF algorithm is the decision tree. Imagine that you need to make a
decision about something, such as what to work on next. Some variables can help
you decide the best course of action, and some variables weigh higher than others.
In this case, you might ask first, “How much money will this make me?” If the answer
is less than $10, you can choose to not go ahead with the task. If the answer is more
than $10, you might ask the next question in the decision tree, “Will working on this
make me happy?” and answer with a yes/no. You can continue to build out this tree
until you’ve reached a conclusion and chosen a task to work on.

The decision tree algorithm lets the computer figure out, based on the training set,
which variables are the most important, and put them in the top of the tree, and then
gradually use less-important variables. This allows it to combine variables and say,
“If the amount is greater than $10 and makes me happy, and amount of work less
than 1 hour, then yes.”

A problem with decision trees is that the top levels of the tree have a huge impact on
the answer, and if the new data doesn’t follow exactly the same distribution as the
training set, the ability to generalize might suffer. This is where the random forest
method comes in. By building a collection of decision trees, you mitigate this risk.
When making the answer, you pick the majority vote in the case of classification, or
take the mean in case of regression. Because you use votes or means, you can also
give back full probabilities in a natural way that not many algorithms share.

Random forests are also known for other kinds of advantages, such as their immunity
to unimportant features, noisy datasets in terms of missing values, and mislabeled
records. 
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■ There are hundreds of methods for ML modeling. Some are parametric, mean-
ing that the form of the mathematical function relating the features to the target
is fixed in advance. Parametric models tend to be more highly interpretable yet
less accurate than nonparametric approaches, which are more flexible and can
adapt to the true complexity of the relationship between the features and the tar-
get. Because of their high levels of predictive accuracy and their flexibility, non-
parametric approaches are favored by most practitioners of machine learning.

■ Machine-learning methods are further broken into supervised and unsuper-
vised methods. Supervised methods require a training set with a known target,
and unsupervised methods don’t require a target variable. Most of this book is
dedicated to supervised learning.

■ The two most common problems in supervised learning are classification, in
which the target is categorical, and regression, in which the target is numerical.
In this chapter, you learned how to build both classification and regression
models and how to employ them to make predictions on new data.

■ You also dove more deeply into the problem of classification. Linear algorithms
can define linear decision boundaries between classes, whereas nonlinear
methods are required if the data can’t be separated linearly. Using nonlinear
models usually has a higher computational cost.

■ In contrast to classification (in which a categorical target is predicted), you pre-
dict a numerical target variable in regression models. You saw examples of linear
and nonlinear methods and how to visualize the predictions of these models.

3.5 Terms from this chapter

Word Definition

model The base product from using an ML algorithm on training data.

prediction Predictions are performed by pulling new data through the model.

inference The act of gaining insight into the data by building the model and not making predictions.

(non)parametric Parametric models make assumptions about the structure of the data. Nonparamet-
ric models don’t.

(un)supervised Supervised models, such as classification and regression, find the mapping between 
the input features and the target variable. Unsupervised models are used to find pat-
terns in the data without a specified target variable.

clustering A form of unsupervised learning that puts data into self-defined clusters.

dimensionality 
reduction

Another form of unsupervised learning that can map high-dimensional datasets to a 
lower-dimensional representation, usually for plotting in two or three dimensions.

classification A supervised learning method that predicts data into buckets.

regression The supervised method that predicts numerical target values.
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In the next chapter, you’ll look at creating and testing models, the exciting part of
machine learning. You’ll see whether your choice of algorithms and features is going
to work to solve the problem at hand. You’ll also see how to rigorously validate a
model to see how good its predictions are likely to be on new data. And you’ll learn
about validation methods, metrics, and some useful visualizations for assessing your
models’ performance.



Model evaluation and
optimization
After you fit a machine-learning model, the next step is to assess the accuracy of
that model. Before you can put a model to use, you need to know how well it’s
expected to predict on new data. If you determine that the predictive performance
is quite good, you can be comfortable in deploying that model in production to
analyze new data. Likewise, if you assess that the predictive performance isn’t good
enough for the task at hand, you can revisit your data and model to try to improve
and optimize its accuracy. (The last section of this chapter introduces simple model
optimization. Chapters 5, 7, and 9 cover more-sophisticated methods of improving
the predictive accuracy of ML models.)

This chapter covers
■ Using cross-validation for properly evaluating

the predictive performance of models
■ Overfitting and how to avoid it
■ Standard evaluation metrics and visualizations

for binary and multiclass classification
■ Standard evaluation metrics and visualizations

for regression models
■ Optimizing your model by selecting the optimal

parameters
77
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 Properly assessing the predictive performance of an ML model is a nontrivial task.
We begin this chapter by introducing statistically rigorous techniques to evaluate the
predictive performance of ML models, demonstrating both pictorially and with pseudo-
code how to perform correct validation of a model.

 From there, we dive into assessment of ML classification models, focusing on the
typical evaluation metrics and graphical tools used by machine-learning practitioners.
Then we introduce analogous evaluation tools for regression models. Finally, we
describe a simple way to optimize the predictive performance of a model through
parameter tuning.

 By the end of the chapter, you’ll be equipped with the means and know-how to eval-
uate the predictive accuracy of the ML models that you built in chapter 3 and to opti-
mize those models for predictive accuracy (see figure 4.1). This model evaluation
provides the information you need to determine whether the model you built is good
enough for your use case or requires further optimization.

4.1 Model generalization: assessing predictive accuracy 
for new data
The primary goal of supervised machine learning is accurate prediction. You want
your ML model to be as accurate as possible when predicting on new data (for which
the target variable is unknown). Said differently, you want your model, which has
been built from training data, to generalize well to new data. That way, when you
deploy the model in production, you can be assured that the predictions generated
are of high quality.

 Therefore, when you evaluate the performance of a model, you want to determine
how well that model will perform on new data. This seemingly simple task is wrought with
complications and pitfalls that can befuddle even the most experienced ML users.

Answers

Prediction

Modeling

Model building

Model optimizationModel evaluation

New data

Historical data

Figure 4.1 Evaluation and optimization 
in the ML workflow
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This section describes the difficulties that arise when evaluating ML models and pro-
poses a simple workflow to overcome those menacing issues and achieve unbiased esti-
mates of model performance. 

4.1.1 The problem: overfitting and model optimism

To describe the challenges associated with estimating the predictive accuracy of a
model, it’s easiest to start with an example.

 Imagine that you want to predict the production of bushels of corn per acre on a
farm as a function of the proportion of that farm’s planting area that was treated with
a new pesticide. You have training data for 100 farms for this regression problem. As
you plot the target (bushels of corn per acre) versus the feature (percent of the farm
treated), it’s clear that an increasing, nonlinear relationship exists, and that the data
also has random fluctuations (see figure 4.2).

Now, suppose you want to use a simple nonparametric ML regression modeling tech-
nique to build a predictive model for corn production as a function of proportion of
land treated. One of the simplest ML regression models is kernel smoothing. Kernel
smoothing operates by taking local averages: for each new data point, the value of the tar-
get variable is modeled as the average of the target variable for only the training data
whose feature value is close to the feature value of the new data point. A single parame-
ter, called the bandwidth parameter, controls the size of the window for the local averaging.
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Figure 4.2 The training data for the corn production regression problem contains a clear signal and noise.
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 Figure 4.3 demonstrates what happens for various values of the kernel-smoothing
bandwidth parameters. For large values of the bandwidth, almost all of the training
data is averaged together to predict the target, at each value of the input parameter.
This causes the model to be flat and to underfit the obvious trend in the training data.
Likewise, for small values of the bandwidth, only one or two training instances are
used to determine the model output at each feature value. Therefore, the model
effectively traces every bump and wiggle in the data. This susceptibility to model the
intrinsic noise in the data instead of the true signal is called overfitting. Where you
want to be is somewhere in the Goldilocks zone: not too underfit and not too overfit.

Now, let’s get back to the problem at hand: determining how well your ML model will
generalize to predict the corn output from data on different farms. The first step in
this process is to select an evaluation metric that captures the quality of your predic-
tions. For regression, the standard metric for evaluation is mean squared error (MSE),
which is the average squared difference between the true value of the target variable
and the model-predicted value (later in this chapter, you’ll learn about other evalua-
tion metrics for regression and classification).

 This is where things get tricky. Evaluated on the training set, the error (mea-
sured by MSE) of our model predictions gets ever smaller as the bandwidth parame-
ter decreases. This is expected: the more flexibility that you allow the model, the
better it’ll do at tracing the patterns (both the signal and the noise) in the training
data. But the models with smallest bandwidth are severely overfit to the training
data because they trace every random fluctuation in the training set. Using these
models to predict on new data will result in poor predictive accuracy, because the
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Figure 4.3 Three fits of a kernel-smoothing regression model to the corn production training set. For small values 
of the bandwidth parameter, the model is overfit, resulting in an overly bumpy model. For large values of the 
bandwidth parameter, the model is underfit, resulting in a model that’s too flat. A good choice of the tuning 
parameter results in a fit that looks just right.
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new data will have its own unique random noise signatures that are different from
those in the training set.

 Thus, a divergence occurs between the training set error and the generalization
error of an ML model. This divergence is exemplified on the corn production data in
figure 4.4. For small values of the bandwidth parameter, the MSE evaluated on the
training set is extremely small, whereas the MSE evaluated on new data (in this case,
10,000 new instances) is much larger. Simply put, the performance of the predictions
of a model evaluated on the training set isn’t indicative of the performance of that
model on new data. Therefore, it’s dangerous to evaluate the performance of a model
on the same data that was used to train the model. 

CAUTION ABOUT DOUBLE-DIPPING THE TRAINING DATA Using the training data
for both model fitting and evaluation purposes can lead you to be overly opti-
mistic about the performance of the model. This can cause you to ultimately
choose a suboptimal model that performs poorly when predicting on new data.

As you see in the corn production data, choosing the model with the smallest training
set MSE causes the selection of the model with the smallest bandwidth. On the training

Best model on training data:
MSE on training data = 0.08
MSE on new data = 0.50

Best model on new data:
MSE on training data = 0.27
MSE on new data = 0.22
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Error on
new data

Error on
training  data
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0.0
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Figure 4.4 Comparison of the training set error to the error on new data for the corn 
production regression problem. The training set error is an overly optimistic measure of 
the performance of the model for new data, particularly for small values of the bandwidth 
parameter. Using the training set error as a surrogate for the prediction error on new data 
will get you into a lot of trouble.
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set, this model yields an MSE of 0.08. But when applied to new data, the same model
yields an MSE of 0.50, which is much worse than the optimal model (bandwidth = 0.12
and MSE = 0.27).

 You need an evaluation metric that better approximates the performance of the
model on new data. This way, you can be confident about the accuracy of your model
when deployed to make predictions on new data. This is the topic of the next subsection.

4.1.2 The solution: cross-validation

We’ve diagnosed the challenge in model evaluation: the training set error isn’t indica-
tive of the model error when applied to new data. To get a good estimate of what your
error rate will be for new data, you must use a more sophisticated methodology called
cross-validation (often abbreviated CV) that rigorously employs the training set to eval-
uate what the accuracy will be on new data.

 The two most commonly used methods for cross-validation are the holdout method
and k-fold cross-validation. 

THE HOLDOUT METHOD

Using the same training data to both fit and evaluate the accuracy of a model pro-
duces accuracy metrics that are overly optimistic. The easiest way around this is to use
separate training and testing subsets. You use only the training subset to fit the model,
and only the testing subset to evaluate the accuracy of the model.

 This approach is referred to as the holdout method, because a random subset of the
training data is held out from the training process. Practitioners typically leave out
20–40% of the data as the testing subset. Figure 4.5 depicts the basic algorithmic flow
of the holdout method, and listing 4.1 provides the Python pseudocode.

# assume that we begin with two inputs:
#    features – a matrix of input features
#    target – an array of target variables corresponding to those features
features = rand(100,5)
target = rand(100) > 0.5

N = features.shape[0] # The total number of instances
N_train = floor(0.7 * N) # The total number of training instances

idx = random.permutation(N)    

idx_train = idx[:N_train]
idx_test = idx[N_train:]

features_train = features[idx_train,:]
target_train = target[idx_train]
features_test = features[idx_test,:]
target_test = target[idx_test]

Listing 4.1 Cross-validation with the holdout method

Randomizes index

Splits index

Breaks your data 
into training and 
testing subsets
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# Build, predict, evaluate (to be filled out)
# model = train(features_train, target_train)
# preds_test = predict(model, features_test)
# accuracy = evaluate_acc(preds_test, target_test)

Now, let’s apply the holdout method to the corn production data. For each value of
the bandwidth parameter, you apply the holdout method (using a 70/30 split) and
compute the MSE on the predictions for the held-out 30% of data. Figure 4.6 demon-
strates how the holdout method estimates of the MSE stack up to the MSE of the
model when applied to new data. Two main things stand out:

■ The error estimates computed by the holdout method are close to the new-data
error of the model. They’re certainly much closer than the training set error
estimates (figure 4.4), particularly for small-bandwidth values.

■ The holdout error estimates are noisy. They bounce around wildly compared to
the smooth curve that represents the error on new data.

You could beat down the noise by doing repeated random training-testing splits and
averaging the result. But over multiple iterations, each data point will be assigned to
the testing set a different number of times, which could bias the result.

 A better approach is to do k-fold cross-validation.

1. Randomly split training
instances into training
and testing subsets

2. Train an ML
model on the
training subset

Features

3. Make predictions
on testing subset

4. Comparing testing
predictions to testing target
to assess accuracy

Training

Model

Testing
predictions

Ignore target
when predictingTesting

Target

Figure 4.5  Flowchart of the holdout method of cross-validation.
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K-FOLD CROSS-VALIDATION

A better but more computationally intensive approach to cross-validation is k-fold cross-
validation. Like the holdout method, k-fold cross-validation relies on quarantining
subsets of the training data during the learning process. The primary difference is
that k-fold CV begins by randomly splitting the data into k disjoint subsets, called folds
(typical choices for k are 5, 10, or 20). For each fold, a model is trained on all the data
except the data from that fold and is subsequently used to generate predictions for the
data from that fold.

 After all k-folds are cycled through, the predictions for each fold are aggregated
and compared to the true target variable to assess accuracy. Figure 4.7 illustrates k-fold
cross-validation, and listing 4.2 provides the pseudocode.

 Finally, let’s apply k-fold cross-validation to the corn production data. For each
value of the bandwidth parameter, you apply k-fold cross-validation with k = 10 and
compute the cross-validated MSE on the predictions. Figure 4.8 demonstrates how the
k-fold cross-validation MSE estimates stack up to the MSE of the model when applied
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Figure 4.6 Comparison of the holdout error MSE to the MSE on new data, 
using the corn production dataset. The holdout error is an unbiased estimate of 
the error of each model on new data. But it’s a noisy estimator that fluctuates 
wildly between 0.14 and 0.40 for bandwidths in the neighborhood of the 
optimal model (bandwidth = 0.12).
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1. Randomly split training
instances into k equal-

   sized subsets
2. Train an ML

model on the
training subset

3. Make predictions
on fold i subset

4. Store fold i predictions in
the CV predictions array

5. Compare CV predictions to
target to assess accuracy

Training:
all folds
except i

For i in 1:k

Model

Fold i
predictions

CV predictions

Fold 1

…

…

Ignore target
when predicting

Fold 2

Fold k Fold i

Fold i

Features
Target

Figure 4.7 Flowchart of k-fold cross-validation
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Figure 4.8 Comparison of the k-fold cross-validation error MSE to the MSE on new data, using the corn 
production dataset. The k-fold CV error is a good estimate for how the model will perform on new data, 
allowing you to use it confidently to forecast the error of the model and to select the best model.
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to new data. Clearly, the k-fold cross-validation error estimate is close to the error of
the model on future data.

N = features.shape[0]
K = 10 # number of folds

preds_kfold = np.empty(N)
folds = np.random.randint(0, K, size=N)

for idx in np.arange(K):

    features_train = features[folds != idx,:]
    target_train = target[folds != idx]
    features_test = features[folds == idx,:]

    # Build and predict for CV fold (to be filled out)
    # model = train(features_train, target_train)
    # preds_kfold[folds == idx] = predict(model, features_test)

# accuracy = evaluate_acc(preds_kfold, target)

4.1.3 Some things to look out for when using cross-validation

Cross-validation gives you a way to estimate how accurately your ML models will pre-
dict when deployed in the wild. This is extremely powerful, because it enables you to
select the best model for your task.

 But when you apply cross-validation to real-world data, you need to watch out for a
few things:

■ Cross-validation methods (including both the holdout and k-fold methods)
assume that the training data forms a representative sample from the popula-
tion of interest. If you plan to deploy the model to predict on new data, that
data should be well represented by the training data. If not, the cross-validation
error estimates may be overly optimistic for the error rates on future data. Solu-
tion: Ensure that any potential biases in the training data are addressed and
minimized.

■ Some datasets use features that are temporal—for instance, using last month’s
revenue to forecast this month’s revenue. If this is the case with your data, you
must ensure that features that are available in the future can never be used to
predict the past. Solution: You can structure your cross-validation holdout set or
k-folds so that all the training set data is collected previous to the testing set.

■ The larger the number of folds used in k-fold cross-validation, the better the
error estimates will be, but the longer your program will take to run. Solution:
Use at least 10 folds (or more) when you can. For models that train and predict
quickly, you can use leave-one-out cross-validation (k = number of data instances).

Next, you’ll build off of these cross-validation tools and take a deeper look at how to
perform rigorous model evaluation for classification models.

Listing 4.2 Cross-validation with k-fold cross-validation

Loops over 
the folds

Breaks your data 
into training and 
testing subsets
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4.2 Evaluation of classification models
We begin our discussion of evaluating classification models by presenting problems
with only two classes, also known as binary classification. Chapter 3 introduced binary
classification in machine learning as a powerful method for predicting a positive/neg-
ative outcome based on many factors or variables. A good example of binary classifica-
tion is the detection of diseases or survival predictions. 

 Imagine that you want to predict whether a Titanic passenger would survive, based
on personal, social, and economic factors. You’d gather everything you know about
the passengers and train a classifier that could relate all this information to their sur-
vival probability. You first saw this example in chapter 2, but the first five rows of the
Titanic Passengers dataset is shown again in figure 4.9.

To build your classifier, you feed this dataset into a classification algorithm. Because
the dataset consists of different types of data, you have to make sure the algorithm
knows how to deal with these types. As discussed in the previous chapters, you might
need to process the data prior to training the model, but for this chapter you’ll view
the classifier as a black box that has learned the mapping from the input variables to
the target variable. The goal of this section is to evaluate the model in order to opti-
mize the prediction accuracy and compare with other models.

 With the data ready, you move to the next task: cross-validation. You’ll divide the
full dataset into training and testing sets and use the holdout method of cross-validation.
The model will be built on a training set and evaluated on a held-out testing set. It’s
important to reiterate that your goal isn’t necessarily to obtain the maximum model
accuracy on the training data, but to obtain the highest predictive accuracy on unseen
data. In the model-building phase, you’re not yet in possession of this data, by defini-
tion, so you pretend that some of the training data is hidden for the learning algorithm. 
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Figure 4.9 The first five rows of the Titanic Passengers dataset. The target column indicates whether a 
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Figure 4.10 illustrates the dataset-splitting step in this particular example.
 With the training set ready, you can build the classifier and make predictions on

the testing set. Following the holdout method of figure 4.5, you obtain a list of predic-
tion values: 0 (died) or 1 (survived) for all rows in the test set. You then go to step 3 of
the evaluation workflow and compare these predictions to the actual survival values to
obtain a performance metric that you can optimize.

 The simplest performance measure of a classification model is to calculate the
fraction of correct answers; if three out of four rows were correctly predicted, you’d say
the accuracy of the model on this particular validation set is 3/4 = 0.75, or 75%. Fig-
ure 4.11 illustrates this result. The following sections introduce more-sophisticated
ways of performing this comparison.
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Figure 4.10 Splitting the full dataset into training and testing sets allows you to evaluate the model.
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Figure 4.11 Comparing the testing set predictions with the actual 
values gives you the accuracy of the model.
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4.2.1 Class-wise accuracy and the confusion matrix

The predictions provide more information than simply being correct or not. For
example, you can analyze the accuracy per class (how many were predicted to survive
but actually died or survived). For binary classification, you can be wrong in two ways:
predicting 0 when the correct value is 1, or predicting 1 when the correct value is 0. In
the same way, you can be correct in two ways. Figure 4.12 illustrates.

In many classification problems, it’s useful to go beyond the simple counting accuracy
and look at this class-wise accuracy, or class confusion. It turns out to be useful to dis-
play these four numbers in a two-by-two diagram called a confusion matrix, shown in fig-
ure 4.13.

Each element in the matrix shows the class-wise accuracy or confusion between the
positive and the negative class. Figure 4.14 relates the specific confusion matrix in fig-
ure 4.13 to the general concept of receiver operating characteristics (ROCs) that
you’ll employ widely throughout the rest of this book. Although these terms can be a
bit confusing at first, they’ll become important when talking to other people about
the performance of your model.
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Test set labels
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1 of 3 are falsely classified as 0.
0 of 1 are falsely classified as 1.

Figure 4.12 Counting the class-wise accuracy and error rate gives you more 
information on the model accuracy.
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0 of 1 are falsely classified as 1.

Figure 4.13 Organizing the class-wise accuracy into a 
confusion matrix
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4.2.2 Accuracy trade-offs and ROC curves

So far you’ve looked only at predictions for which the output is the predicted class; in
our Titanic example, 1 for survival and 0 otherwise. Machine-learning predictions usu-
ally hold a degree of uncertainty, and many classification algorithms output not only
the zero-one predictions, but the full prediction probabilities. For example, what was
simply predicted as survived in our Titanic model may have had a probability of sur-
vival of 0.8, 0.99, or 0.5. It’s clear that there’s a big difference in the confidence of
these answers, and in this section you’ll take advantage of this information to evaluate
your models in more detail.

 The output of a probabilistic classifier is what we call the probability vectors or class prob-
abilities. For every row in the test set, you get a real-valued number from 0 to 1 for
every class in the classifier (summing to 1). Until now, you’ve made predictions by
considering probabilities above 0.5 to determine the class predictions, from which you
calculated all the performance metrics from the previous section. We say that the
threshold that determines the class is 0.5. It’s clear that you could choose any other
threshold and would get different values for all of your metrics.
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Figure 4.14 The confusion matrix 
for your binary classifier tested on 
only four rows. The ROC metrics 
pointed out in the figure are 
chopped up and explained in the 
bottom box.
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Figure 4.15 shows the process of sorting the probability vectors and setting a threshold
of 0.7. All rows above the line are now predicted to survive, and you can compare
these to the actual labels to get the confusion matrix and the ROC metrics at this par-
ticular threshold. If you follow this process for all thresholds from 0 to 1, you define
the ROC curve, shown in figure 4.16. 

 From figure 4.16, you can read out the confusion matrix at all thresholds, making
the ROC curve a powerful visualization tool when you’re evaluating classifier perfor-
mance. Given the true and predicted labels from any cross-validation process, the
ROC curve is calculated as shown in listing 4.3.

Threshold: “survived”
probabilities > 0.7

15

16

17

18

19

Survived

Output from classifier:
class probabilities

0.092

0.904

0.646

0.740

0.460

Died

0.908

0.096

0.354

0.260

0.540

308

215

217

54

169

Survived

Sorted
probabilities

0.705

0.703

0.700

0.698

0.698

Died

0.295

0.297

0.300

0.302

0.302

Figure 4.15 A subset of probabilistic predictions from the Titanic test set. After sorting the full 
table by decreasing survival probability, you can set a threshold and consider all rows above this 
threshold as survived. Note that the indices are maintained so you know which original row the 
instance refers to.
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Figure 4.16 The ROC curve defined by calculating the confusion matrix and ROC metrics at 
100 threshold points from 0 to 1. By convention, you plot the false-positive rate on the x-axis and 
the true-positive rate on the y-axis.
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import numpy as np

def roc_curve(true_labels, predicted_probs, n_points=100, pos_class=1): 

  thr = np.linspace(0,1,n_points)
  tpr = np.zeros(n_points)
  fpr = np.zeros(n_points)

  pos = true_labels == pos_class
  neg = np.logical_not(pos)
  n_pos = np.count_nonzero(pos)
  n_neg = np.count_nonzero(neg)

  for i,t in enumerate(thr):
    tpr[i] = np.count_nonzero(np.logical_and(

predicted_probs >= t, pos)) / n_pos
    fpr[i] = np.count_nonzero(np.logical_and(

predicted_probs >= t, neg)) / n_neg
  return fpr, tpr, thr

If you follow the ROC curve, you see that when the false-positive rate increases, the
true-positive rate decreases. This trade-off is the “no free lunch” of machine learning
because you’re able to sacrifice the fraction of instances that you classify correctly for
more certainty that you’re correct, and vice versa, depending on your choice of the
probability threshold parameter.

 In real-world scenarios, this trade-off can be extremely important to evaluate. If
you’re classifying whether a patient has cancer or not, it’s much better to classify a few
extra healthy patients as sick, and avoid classifying any sick patients as healthy. So
you’d select the threshold that would minimize the false-negative rate, and hence
maximize the true-positive rate and place you as far as possible in the top of the ROC
plot while sacrificing the false-positive rate.

 Another good example is spam filters, where you’ll need to choose between
unwanted emails being shown in your inbox or wanted emails being dumped in the
spam folder. Or credit-card companies detecting fraudulent activities—would you
rather call your customers often with false alarms or risk missing potential fraudulent
transactions?

 In addition to the trade-off information, the ROC curve itself also provides a view
of the overall performance of the classifier. A perfect classifier would have no false
positives and no missed detections, so the curve would be pushed to the top-left cor-
ner, as illustrated in figure 4.17. This leads us naturally to another evaluation metric:
the area under the ROC curve (AUC). The larger this area, the better the classifica-
tion performance. The AUC is a widely used choice for evaluating and comparing
models, although in most cases it’s important to inspect the full ROC curve in order to

Listing 4.3 The ROC curve

Returns the false-positive and true-
positive rates at n_points thresholds

for the given true and predicted labels

Allocates the threshold 
and ROC lists

Precalculates values for 
the positive and negative 
cases, used in the loop

For each threshold, 
calculates the rate of 
true and false positives
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a 
understand the performance trade-offs. You’ll use the ROC curve and the AUC evalu-
ation metric to validate classification models throughout the rest of this book. 

from numpy import trapz

def auc(true_labels, predicted_labels, pos_class=1): 
    fpr, tpr, thr = roc_curve(true_labels, predicted_labels,

pos_class=pos_class) 
    area = -trapz(tpr, x=fpr) 
    return area

4.2.3 Multiclass classification

So far you’ve looked only at binary, or two-class, classification problems, but luckily
you can use many of the same tools for multiclass classifiers. A well-known multiclass
classification problem is that of handwritten digit recognition. We all send physical
mail from time to time, and there’s a good chance that a machine-learning algorithm
has been used in the process of determining the endpoint address of your letter. That
sounds like a huge challenge if your handwriting is anything like ours, but such auto-
mated systems have nevertheless been in use by postal services for decades.

Listing 4.4 The area under the ROC curve
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Figure 4.17 The ROC curve illustrates the overall model performance. You 
can quantify this by defining the AUC metric: the area under the ROC curve.

Returns the area 
under the ROC curv
given the true label
and the correspond
labels predicted by 
classification modelThe false-positive 

and true-positive 
rate of the ROC 
curve from listing 4.3

Area integral is calculated
using the trapezoidal

method available in numpy
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 Because of the early success of machine learning on handwritten digit recogni-
tion, this example has been used throughout the ML literature as a benchmark of
multiclass classification performance. The idea is to scan the handwritten digits and
divide them into images with one letter in each. You then use image-processing algo-
rithms or build a multiclass classifier on the raw grayscale pixels that can predict the
digit. Figure 4.18 shows a few examples of the handwritten digit dataset known as
MNIST.

You use the random forest algorithm (introduced in chapter 3) to build a classifier
from the training set, and you generate the confusion matrix from the held-out test-
ing set. Remember that you’ve worked with the confusion matrix for only binary clas-
sification. Luckily, you can easily define it for multiple classes, as every element in the
matrix is the class on the row versus the class on the column. For the MNIST classifier,
you can see in figure 4.19 that most of the power is located on the matrix diagonal, as

Figure 4.18 Handwritten digits in the MNIST dataset. The 
entire dataset consists of 80,000 such digits, each in a 
28 x 28–pixel image. Without any image processing, each 
row of our dataset then consists of a known label (0 to 9) 
and 784 features (one for each of the 28 x 28 pixels).
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Figure 4.19 The confusion matrix for the 10-class MNIST handwritten 
digit classification problem
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it should be, because it shows the number of instances that are correctly classified for
each digit. The largest nondiagonal items show where the classifier is most confused.
Inspecting the figure, you can see that the greatest confusion occurs between digits 4
and 9, 3 and 5, and 7 and 9, which makes sense, given what you know about the shape
of the digits.

 The reason for displaying the class-wise accuracy in the form of a matrix is to take
advantage of our excellent visual abilities to process more information. In figure 4.19,
you can clearly see how applying contrast to the confusion matrix can help take advan-
tage of this ability. 

 So how do you generate the ROC curve for multiclass classifiers? The ROC curve
is in principle applicable to only binary classification problems, because you divide
the predictions into positive and negative classes in order to get ROC metrics such as
the true-positive rate and false-positive rate commonly used on the ROC curve axis.
To simulate binary classification in a multiclass problem, you use the one-versus-all
trick. For each class, you denote the particular class as the positive class, and every-
thing else as the negative class, and you draw the ROC curve as usual. The 10 ROC
curves from running this process on the MNIST classifier are shown in figure 4.20.
The most accurately classified digits are 0 and 1, consistent with the confusion
matrix in figure 4.19. The confusion matrix, however, is generated from the most
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rate

0.005 0.010 0.015 0.0250.020 0.035 0.0400.030

Digit 0, AUC 0.996
Digit 1, AUC 0.998
Digit 2, AUC 0.993
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Digit 7, AUC 0.995
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Digit 9, AUC 0.989
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Figure 4.20 The ROC curves for each class of the MNIST 10-class classifier using the one-versus-
all method for simulating a binary classification problem. Note that because the classifier is so good, 
we’ve zoomed closely into the top corner of the ROC curve in order to see any differences in the 
model performance between the classes. The AUC is calculated for each class and also shows a 
well-performing model overall.
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probable class predictions, whereas the ROC curve shows the performance of the
class at all probability thresholds. 

 Keep in mind, however, that the multiclass ROC curves don’t show the entire con-
fusion matrix on the curve. In principle, there’s a full 10 x 10 confusion matrix at
every point on the ROC curve, but we can’t visualize this in a sufficiently simple way.
In the multiclass case, it’s therefore important to look at both the confusion matrix
and the ROC curve.

4.3 Evaluation of regression models
You’ve already looked at regression models in previous chapters. Generally, regression is
the term you use for models that predict a numeric outcome, such as an integer or
floating-point value. For regression, you use a different set of performance metrics
that we introduce in this section.

 You’ll use the Auto MPG dataset, first introduced in chapter 2, as the working
example in this section. Figure 4.21 shows a small subset of this dataset. You run this
dataset through all the necessary data transformations (see section 2.2 for more infor-
mation about data transformations) and choose an appropriate model as discussed in
chapters 2 and 3. In this case, you’re interested in measuring the model performance.

Using the basic model-evaluation workflow introduced at the beginning of this chap-
ter, you use the data and your choice of algorithm to build a cross-validated regression
model. Potential model performance metrics used in this process are introduced in
the following sections, but figure 4.22 shows the most basic visualization of the regres-
sion performance on which those metrics are based: the scatter plot of predicted ver-
sus actual values.
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Figure 4.21 A subset of the Auto MPG dataset
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4.3.1 Using simple regression performance metrics

In contrast to classification models, regression carries no simple notion of a correct pre-
diction. A numeric prediction is in general unlikely to be exactly right, but it can be
close to or far from the correct value. This is also a consequence of the nature of what it
means to be a correct value, because we usually consider numerical measurements to
be drawn from a distribution with a degree of uncertainty known as the error. This sec-
tion introduces two simple metrics to measure the regression performance: the root-
mean-square error (the square root of the MSE) and the R-squared value.

 The simplest form of performance measurement of a regression model is the root-
mean-square error, or RMSE. This estimator looks at the difference from each of the pre-
dicted values to the known values, and calculates the mean in a way that’s immune to
the fact that predicted values can be both higher and lower than the actual values. Fig-
ure 4.23 illustrates RMSE calculation.

 To encourage a better understanding of the details in the RMSE calculation, the
following listing shows a code snippet.

def rmse(true_values, predicted_values):
  n = len(true_values)
  residuals = 0
  for i in range(n):
    residuals += (true_values[i] – predicted_values[i])**2.
  return np.sqrt(residuals/n)

Listing 4.5 The root-mean-square error
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Figure 4.22 Scatter plot of the predicted MPG versus actual values from the 
testing set. The diagonal line shows the optimal model.
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The advantage of RMSE is that the result is in the same units as the values themselves,
but it’s also a disadvantage in the sense that the RMSE value depends on the scale of
the problem, and thus isn’t easily comparable across datasets. If the predicted or
actual values are larger numbers, the RMSE will be correspondingly higher. Although
this isn’t a problem when comparing models in the same project, it can be a chal-
lenge to understand the overall model performance and compare it to other models
in general. 

 To overcome this, often it’s worthwhile to also compute the R-squared, or R2, met-
ric, whose response is relative and always in the 0–1 range. If the model can predict
the data better, the R-squared value is closer to 1. The following listing shows more
details of the R-squared calculation.

def r2(true_values, predicted_values):
  n = len(true_values)
  mean = np.mean(true_values)
  residuals = 0
  total = 0
  for i in range(n):
    residuals += (true_values[i] – predicted_values[i])**2.
    total += (true_values[i] – mean)**2.
  return 1.0 – residuals/total

Listing 4.6 The R-squared calculation
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Figure 4.23 An RMSE calculation: in the equation, yi and xi are the ith target and feature vector, 
respectively, and f(x) denotes the application of the model to the feature vector, returning the 
predicted target value.
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Whether using MSE, RMSE, or R2 as the evaluation metric, you should always keep the
following in mind:

■ Always use cross-validation to assess the model. If you don’t, the metrics will
always improve with increasing model complexity, causing overfitting.

■ Wherever possible, the evaluation metric should align with the problem at
hand. For instance, if predicting MPG from automobile features, an RMSE of
5 means that you expect the average prediction to differ from the true MPG
by 5 miles per gallon.

In addition, regression uses lots of other evaluation metrics, many of which have built-in
penalization for overfitting (and thus don’t require cross-validation). Examples include
the Akaikie information criterion (AIC) and Bayesian information criterion (BIC).
Most textbooks on regression analysis cover these and more advanced topics.

4.3.2 Examining residuals

In the previous section, you saw how the residuals, the distance between the predicted
and actual values, were used for both of the simple metrics introduced. These residu-
als can also be interesting to analyze visually themselves. 

 Figure 4.24 shows an example residual plot for our MPG dataset. This presents the
same information as in the scatter plot in figure 4.23, but zoomed in on the scale of
the residuals. In an ideal case, you expect the residuals to be distributed randomly
around the 0-line. In the lower end of the figure, MPG values from 10 to 35, it looks
like the residuals are randomly distributed around the 0-line, maybe with a slight bias
toward overestimating the values. At values 35–45, however, you can see a clear bias
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Figure 4.24 The residual plot from predictions on the MPG dataset. At the 
horizontal 0-line, the residual is 0.
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toward underestimating the values, resulting in larger residual values. You can use this
information to improve the model, either by tweaking model parameters, or by pro-
cessing or amending the data. If you can acquire additional data, you could try to
obtain labels for a few more high-MPG examples. In this case, you could find a few
more high-MPG cars and add them to the dataset in order to improve the predictions
in that part of the scale.

 You’ve seen how cross-validation is used to test models and some of the perfor-
mance metrics you can use to evaluate the results. For the simplest models, this is a
matter of training, testing, and computing the appropriate performance metric(s).
More-sophisticated algorithms have tuning parameters—knobs that can be turned by
the user—that affect how they’re trained and applied. Each combination of settings
yields a different mode. In the next section, you’ll see how sometimes a small adjust-
ment can make a big difference in the results.

4.4 Model optimization through parameter tuning
Most machine-learning models come endowed with one or more tuning parameters that
control the inner workings of the learning algorithm. These tuning parameters typi-
cally control the complexity of the relationship between the input features and target
variable. As a result, the tuning parameters can have a strong influence on the fitted
model and its predictive accuracy on new data. 

 For example, in section 4.1 you saw how a single turning parameter (the band-
width in a kernel-smoothing regression algorithm) can cause wildly different model
fits in the corn production dataset. For small values of the bandwidth parameter, the
regression function was overly bumpy and overfit the data. Likewise, for large values
of the bandwidth parameter, the regression function was too smooth and underfit
the data.

 This section introduces a rigorous methodology to optimize ML models with
respect to the machine-learning algorithm tuning parameters.

4.4.1 ML algorithms and their tuning parameters

Each machine-learning algorithm contains a different set of tuning parameters that
control how the algorithm uses training data to build a model. As the algorithms
become more sophisticated, typically the tuning parameters become more numerous
and esoteric. Here are the standard tuning parameters for some of the popular classi-
fication algorithms that you learned about in chapter 3, listed in order of increasing
complexity:

■ Logistic regression—None
■ K-nearest neighbors—Number of nearest neighbors to average
■ Decision trees—Splitting criterion, max depth of tree, minimum samples needed

to make a split
■ Kernel SVM—Kernel type, kernel coefficient, penalty parameter
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■ Random forest—Number of trees, number of features to split in each node, split-
ting criterion, minimum samples needed to make a split

■ Boosting—Number of trees, learning rate, max depth of tree, splitting criterion,
minimum samples needed to make a split

As an example, think back to chapter 3, where you applied a kernel SVM to the Titanic
Passengers dataset. You saw that the model fit for two choices of the kernel coefficient
parameter (called gamma) in figures 3.8 and 3.9. Note that the fits are different: setting
gamma = 0.01 produces a complex, segmented decision boundary between the two
classes, whereas setting gamma = 0.1 creates a smoother model. In this case, the fitted
model is highly sensitive to the choice of the tuning parameter gamma.

 What makes this difficult is that the appropriate choice for each tuning parameter
for a given algorithm is entirely dependent on the problem and data at hand. What
works well for one problem isn’t necessarily appropriate for the next problem. Relying
on heuristics and rule-of-thumb default tuning parameter settings may lead to poor
predictive performance. Rigorous selection of tuning parameters is critical to ensure
that your models are as accurate as they can be with the given data.

4.4.2 Grid search

The standard way to optimize the choice of tuning parameters for an ML model is via
a brute-force grid search. As you map out the following basic grid-search algorithm,
note that this strategy ties together the material on cross-validation and model evalua-
tion from the previous sections of this chapter. The grid search algorithm is as follows:

1 Choose the evaluation metric that you want to maximize (for example, AUC for
classification, R2 for regression).

2 Choose which ML algorithm you want to use (for example, random forest).
3 Select which tuning parameters you want to optimize over (for example, num-

ber of trees and number of features per split) and the array of values to test for
each parameter.

4 Define the grid as the Cartesian product between the arrays of each tuning
parameter. For example, if the arrays are [50, 100, 1000] for number of trees
and [10, 15] for number of features per split, then the grid is [(50,10), (50,15),
(100,10), (100,15), (1000,10), (1000,15)]. 

5 For each combination of tuning parameters in the grid, use the training set to
perform cross-validation (using either the hold-out or k-fold-CV method) and
compute the evaluation metric on the cross-validated predictions.

6 Finally, select the set of tuning parameters corresponding to the largest value of
the evaluation metric. This is the optimized model.

Why does this work? Grid search does an extensive search over the possible combina-
tions of values for each of the tuning parameters. For each combination, it estimates
the performance of that model on new data by comparing the cross-validated predic-
tions to the true target variable. Then, the model with the best estimated accuracy (for



102 CHAPTER 4 Model evaluation and optimization
new data) is chosen. This model has the highest likelihood of performing the best
when applied to new data. 

 Let’s apply grid search to the Titanic Passengers dataset. You’ll use AUC as your
optimization metric and SVM with a radial basis function (RBF) kernel as your clas-
sification algorithm. You can, in principle, also use grid search to select the best ker-
nel. Indeed, you could use grid search to select between different algorithms!

 Next, you select which tuning parameters to optimize over. For kernel SVM with an
RBF kernel, you have two standard tuning parameters: the kernel coefficient, gamma;
and the penalty parameter, C. The following listing shows how to run a grid search
over those two parameters for this problem.

# Inputs: X – features, y - target

import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.svm import SVC

# grid of (gamma, C) values to try 
gam_vec, cost_vec = np.meshgrid(np.linspace(0.01, 10., 11),

np.linspace(1., 10., 11))

AUC_all = []

# set up cross-validation folds
N = len(y)
K = 10
folds = np.random.randint(0, K, size=N)

# search over every value of the grid
for param_ind in np.arange(len(gam_vec.ravel())):

    # initialize cross-validation predictions
    y_cv_pred = np.empty(N)

    # loop through the cross-validation folds
    for ii in np.arange(K):

# break your data into training and testing subsets
X_train = X.ix[folds != ii,:]
y_train = y.ix[folds != ii]
X_test = X.ix[folds == ii,:]

# build a model on the training set
model = SVC(gamma=gam_vec.ravel()[param_ind], 

C=cost_vec.ravel()[param_ind])
model.fit(X_train, y_train)

# generate and store model predictions on the testing set
y_cv_pred[folds == ii] = model.predict(X_test)

    # evaluate the AUC of the predictions
    AUC_all.append(roc_auc_score(y, y_cv_pred))

Listing 4.7 Grid search with kernel SVM

Initializes empty array 
to store AUC results

Number of cross-
validation folds



103Model optimization through parameter tuning
indmax = np.argmax(AUC_all)
print "Maximum = %.3f" % (np.max(AUC_all))
print "Tuning Parameters: (gamma = %f, C = %f)" % (gam_vec.ravel()[indmax], 
cost_vec.ravel()[indmax])

You find with the Titanic dataset that the maximum cross-validated AUC is 0.670, and
it occurs at the tuning parameter vector (gamma = 0.01, C = 6). A contour plot show-
ing the AUC evaluated over the grid as in figure 4.25 can be informative. A few factors
jump out from this plot:

■ The maximum occurs at the boundary of the grid (gamma = 0.01), meaning
that you’d want to rerun the grid search on an expanded grid.

■ A high amount of sensitivity exists in the accuracy of the predictions to the
numerical value of the gamma parameter, meaning that you need to increase
the granularity of sampling of that parameter.

■ The maximum value occurs near gamma = 0, so expressing the grid on a log
scale (for example, 10-4, 10-3, 10-2, 10-1) is sensible.

■ There’s not much sensitivity of the AUC as a function of C, so you can use a
coarse sampling of that parameter.

Rerunning the grid search on a modified grid, you find that the maximum AUC is
0.690 and it occurs at (gamma = 0.08, C = 20). The value of optimizing over the tuning
parameters is clear: a single model with arbitrary choice of tuning parameter could
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Figure 4.25 Contour plot showing the cross-validated AUC as a function of the two 
tuning parameters, gamma and C. The maximum occurs way off to the upper left, 
meaning that you need to expand the search and focus on that region.
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have attained a result as poor as AUC = 0.5 (no better than random guessing); the
grid-search optimized model boosts the accuracy up to AUC = 0.69.

 Note that grid search doesn’t absolutely ensure that you’ve chosen the best set of
tuning parameters. Because of the limitations caused by choosing a finite grid of pos-
sible values to try, the actual best value might have landed somewhere between the val-
ues of the grid. Readers who have some familiarity with optimization might be
wondering why more-sophisticated optimization routines aren’t traditionally used for
tuning-parameter selection. The short answer is that the world of derivative-free, non-
convex optimization hasn’t yet become part of the standard ML toolkit. The longer
answer is that ML researchers on the cutting edge of the field are beginning to incor-
porate these methods into tuning-parameter optimization strategies.

4.5 Summary
In this chapter, you learned the basics of evaluating ML model performance. Here’s a
quick rundown of the main takeaways:

■ When you evaluate models, you can’t double-dip the training data and use it for
evaluation as well as training.

■ Cross-validation is a more robust method of model evaluation.
■ Holdout cross-validation is the simplest form of cross-validation. A testing set is

held out for prediction, in order to better estimate the model’s capability to be
generalized.

■ In k-fold cross-validation, k-folds are held out one at a time, providing more-
confident estimates of model performance. This improvement comes at a
higher computational cost. If available, the best estimate is obtained if k = num-
ber of samples, also known as leave-one-out cross-validation.

■ The basic model-evaluation workflow is as follows:

1 Acquire and preprocess the dataset for modeling (chapter 2) and determine
the appropriate ML method and algorithm (chapter 3).

2 Build models and make predictions by using either the holdout or k-fold
cross-validation methods, depending on the computing resources available.

3 Evaluate the predictions with the performance metric of choice, depending
on whether the ML method is classification or regression.

4 Tweak the data and model until the desired model performance is obtained.
In chapters 5–8, you’ll see various methods for increasing the model perfor-
mance in common real-world scenarios.

■ For classification models, we introduced a few model-performance metrics to
be used in step 3 of the workflow. These techniques include simple counting
accuracy, the confusion matrix, receiver-operator characteristics, the ROC curve,
and the area under the ROC curve.
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■ For regression models, we introduced the root-mean-square error and R-squared
estimators. Simple visualizations, such as the prediction-versus-actual scatter plot
and the residual plot, are useful.

■ You can use a grid-search algorithm to optimize a model with respect to tuning
parameters.

4.6 Terms from this chapter

In the next chapter, you’ll start looking at improving your models by focusing on their
features. In addition to basic feature-engineering techniques, you’ll learn advanced
methods for extracting information out of text, images, and time-series data. You’ll
also see how to select the best features to optimize the performance of the model and
avoid overfitting.

Word Definition

underfitting/overfitting Using a model that’s too simple or too complex, respectively, for the prob-
lem at hand.

evaluation metric A number that characterizes the performance of the model.

mean squared error A specific evaluation metric used in regression models.

cross-validation The method of splitting the training set into two or more training/testing 
sets in order to better assess the accuracy.

holdout method A form of cross-validation in which a single test set is held out of the 
model-fitting routine for testing purposes.

k-fold cross-validation A kind of cross-validation in which data is split into k random disjoint sets 
(folds). The folds are held out one at a time, and cross-validated on mod-
els built on the remainder of the data.

confusion matrix A matrix showing for each class the number of predicted values that were 
correctly classified or not.

receiver operating charac-
teristic (ROC)

A number representing true positives, false positives, true negatives, or 
false negatives.

area under the ROC curve 
(AUC) 

An evaluation metric for classification tasks defined from the area under 
the ROC curve of false positives versus true positives.

tuning parameter An internal parameter to a machine-learning algorithm, such as the band-
width parameter for kernel-smoothing regression.

grid search A brute-force strategy for selecting the best values for the tuning parame-
ters to optimize an ML model.



Basic feature engineering
The first four chapters have shown you how to fit, evaluate, and optimize a super-
vised machine-learning algorithm, given a set of input features and a target of inter-
est. But where do those input features come from? How do you go about defining
and calculating features? And how do practitioners know whether they’re using the
right set of features for their problem?

This chapter covers
■ Understanding the importance of feature

engineering for your machine-learning project
■ Using basic feature-engineering processes,

including processing dates and times and
simple texts

■ Selecting optimal features and reducing the
statistical and computational complexity of
the model

■ Using feature engineering at model-building and
prediction time
106
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5.1 Motivation: why is feature engineering useful?
In this chapter, we explore how to create features from raw input data—a process
referred to as feature engineering—and walk through a few examples of simple feature-
engineering processes. This will set the groundwork for the more sophisticated
feature-engineering algorithms covered in chapter 7.

5.1.1 What is feature engineering?

Feature engineering is the practice of using mathematical transformations of raw
input data to create new features to be used in an ML model. The following are exam-
ples of such transformations:

■ Dividing total dollar amount by total number of payments to get a ratio of dol-
lars per payment

■ Counting the occurrence of a particular word across a text document
■ Computing statistical summaries (such as mean, median, standard deviation,

and skew) of a distribution of user ping times to assess network health
■ Joining two tables (for example, payments and support) on user ID
■ Applying sophisticated signal-processing tools to an image and summarizing

their output (for example, histogram of gradients)

Before diving into a few examples to demonstrate feature engineering in action, let’s
consider a simple question: why use feature engineering?

5.1.2 Five reasons to use feature engineering

This section describes a few ways that feature engineering provides value in a machine-
learning application. This list isn’t exhaustive, but rather introduces a few of the primary
ways that feature engineering can boost the accuracy and computational efficiency of
your ML models.

TRANSFORM ORIGINAL DATA TO RELATE TO THE TARGET

You can use feature engineering to produce transformations of your original data that
are more closely related to the target variable. Take, for instance, a personal finance
dataset that contains the current bank account balance and credit debt of each cus-
tomer. If you’re building a model to predict whether each customer will become
delinquent in payments three months from now, then the engineered feature of 

Ratio of debt-to-balance = amount of debt / amount of balance

would likely be highly predictive of the target.
 In this case, although the raw inputs are present in the original dataset, the ML

model will have an easier time of finding the relationship between debt-to-balance
ratio and future delinquency if the engineered feature is directly used as an input.
This will result in improved accuracy of predictions.
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BRING IN EXTERNAL DATA SOURCES

Feature engineering enables practitioners to bring external data sources into their
ML models. Imagine that you run an internet subscription service. The first time each
customer logs in, you want to predict the lifetime value of that customer. Among a
variety of metrics, you could capture the geographic location of each user. Although
this data could be fed in directly as a categorical feature (for example, IP address or
postal code), the model will likely have a difficult time determining the location-based
signals that matter (in this case, those might be average income of each location, or
urban versus rural).

 You can do better by bringing in third-party demographic data. For example, this
would allow you to compute the average income and population density of each user’s
location and to insert those factors directly into the training set. Now, instead of rely-
ing on the model to infer such subtle relationships from the raw location data, those
predictive factors immediately become easier to deduce. Further, the feature engi-
neering of location into income and population density enables you to assess which of
these derivatives of location matter the most.

USE UNSTRUCTURED DATA SOURCES

Feature engineering enables you to use unstructured data sources in ML models.
Many data sources aren’t inherently structured into feature vectors that can be
directly inserted into the ML framework presented in the first four chapters. Unstruc-
tured data such as text, time series, images, video, log data, and clickstreams account
for the vast majority of data that’s created. Feature engineering is what enables ML
practitioners to produce ML feature vectors out of these kinds of raw data streams.

 This chapter touches on some rather simple examples of feature engineering on
text data. Subsequent chapters introduce the most commonly used types of feature
engineering for text, images, and time-series data.

CREATE FEATURES THAT ARE MORE EASILY INTERPRETED

Feature engineering empowers ML practitioners to create features that are more inter-
pretable and actionable. Often, using ML to find patterns in data can be useful for mak-
ing accurate predictions, but you may face limitations in the interpretability of the
model and the ultimate utility of the model to drive changes. In these cases, it may be
more valuable to engineer new features that are more indicative of the processes that
drive the data generation and the link between the raw data and the target variable.

 Consider a simple example of machines that manufacture computer hardware.
You could use the raw machine data, such as measurement of signal response and
other processing signals, to build ML models to predict part failure. But features such
as time since the last machine tune-up and volume of hardware produced can provide
insight into the changeable aspects of the manufacturing process.

ENHANCE CREATIVITY BY USING LARGE SETS OF FEATURES

Feature engineering empowers you to throw in large sets of features to see what sticks.
You can create as many features as you can dream up and see which of them carries
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predictive power when thrown in to train a model. This allows ML practitioners to
escape from a rigid mindset when creating and testing features and could result in
newly discovered trends and patterns.

 Although overfitting becomes a concern when dozens or hundreds of features are
used to train an ML model, rigorous feature-selection algorithms can be used to pare
down the set of features to something more manageable. (For example, you can auto-
matically determine that your predictions with the top 10 features are as good as or
better than your predictions with all 1,000 features.) We describe these algorithms
later this chapter, in section 5.3.

5.1.3 Feature engineering and domain expertise

Another way to conceptualize feature engineering is as a mechanism that imbues
domain expertise into a machine-learning model. What we mean by this is simple: for
each problem at hand, knowledge about the data and systems under study is accumu-
lated over time. For some problems, these patterns will be straightforward enough to
be easily learned by an ML model. But for more-challenging problems, the ML mod-
els stand to improve significantly from the codification of that domain expertise into
the feature set. The following are examples of statements of domain expertise that
could easily be coded into ML features:

■ Web conversions are always higher on Tuesday (include the Boolean feature “Is
it Tuesday?”).

■ Household power consumption increases with higher temperature (include
temperature as a feature).

■ Spam emails typically come from free email accounts (engineer the Boolean
feature “Is from free email account?” or email domain).

■ Loan applicants with recently opened credit cards default more often (use the
feature “Days since last credit card opened”).

■ Customers often switch their cell-phone provider after others in their network
also switch providers (engineer a feature that counts the number of people in a
subscriber’s network who recently switched).

Clearly, the list of potential domain expertise tidbits could go on and on. Indeed, the
standard operating procedure for many companies is to use long lists of these ad hoc
rules to make decisions and predictions. These business rules are a perfect set of engi-
neered features on which to start building ML models!

 Turned on its head, feature engineering can be a way to test the preconceived
notions that are held by domain experts. If there’s any question about whether a
particular hypothesis holds any merit, it can be codified and used as a feature in an
ML model. Then, the accuracy of the model can be tested with and without that fea-
ture to assess the conditional importance of the feature in predicting the target vari-
able. If the gains in accuracy are negligible, this is evidence of the lack of added
value of that idea.
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 Next, we present a few examples of simple feature engineering to show how these
processes work in practice. We describe how feature engineering fits into the overall
ML workflow and demonstrate how the predictive accuracy of ML models can be
improved by employing some relatively straightforward feature-engineering processes.

5.2 Basic feature-engineering processes
Before diving into our example, let’s revisit our basic ML workflow to show how fea-
ture engineering extends what you’ve seen so far. Figure 5.1 illustrates the workflow.

The feature-engineering extension of the workflow allows you to expand on the
training data to increase the accuracy of the ML algorithm. To ensure that feature
engineering is used properly, you need to run the prediction data through the same
feature-engineering pipeline that was applied to the training data. This ensures that
predictions are generated by using exactly the same process as applied to the train-
ing data.

5.2.1 Example: event recommendation

To illustrate feature-engineering concepts, this section introduces an example
from the real world: a challenge from the data science competition site Kaggle
(www.kaggle.com). 

Modeling

Model optimization

Model building

Feature engineering

Feature engineering

Historical data

Model evaluation

New data

Answers

Prediction

Figure 5.1 How feature engineering fits 
into the basic ML workflow. You extend the 
training data with features before building 
the model. When making predictions, you 
need to push new data through the same 
feature-engineering pipeline to ensure that 
the answers make sense.

http://www.kaggle.com
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 Imagine that you’re running an event-recommendation site and want to predict
whether an event (such as a meeting, a happy hour, or a lecture) is interesting to a
particular user. You have a set of training data describing which users have shown
interest in which events in the past, and some information about the users and the
events themselves. Your goal is to build an ML model to predict whether a particular
event is interesting to a user—a binary classification model.

 The data and information about the challenge are available at www.kaggle.com/
c/event-recommendation-engine-challenge after you sign up on the Kaggle website
(if you haven’t already). The base datasets are the train.csv, events.csv, and users.csv
files, which can be joined together on user and event identifiers. You limit the data-
set to the events that have an explicit interested or not-interested selection and to
the basic numerical and categorical features. Figure 5.2 shows a selection of this ini-
tial training dataset.

Your sample training data contains the following features:

■ invited—A Boolean indicating whether the individual was invited to the event
■ birthyear—The year the person was born
■ gender—The gender of the person
■ timezone—The time zone of the current location of the individual
■ lat/lng—The latitude/longitude of the event

To start, you’ll build and evaluate a model based on only these six features. It’s clear
that this dataset is limited in terms of the patterns that can identify whether each
user will be interested in the event. As you continue this section, you’ll use a few

Target variable Categorical variable

interested invited birthyear

1

1

1

1

0

0

0

0

1994

1976

1980

1980

1 0 1994

gender

Male

Male

Male

Male

Female

timezone

420

–240

–480

–480

420

lat

–6.357

43.655

33.888

33.846

–7.265

ing

106.362

–79.419

–118.378

–117.977

112.743

1 0 1986 Male –480 NaN NaN

1 0 1984 Male –420 33.493 –111.934

Missing data

Selection data User data Event data

Figure 5.2 A sample of the datasets used for training the event-recommendations model

http://www.kaggle.com/c/event-recommendation-engine-challenge
http://www.kaggle.com/c/event-recommendation-engine-challenge
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straightforward feature-engineering transformations to extend the feature set and
layer on new information.

 You’ll build an initial binary classification model to predict the target variable,
interested, from the six input features. Following the ML workflow from chapters 1–4,
you do the following: 

1 Perform initial data-processing exercises (convert categorical columns to numeri-
cal, impute missing values). 

2 Do the model training (using the random forest algorithm). 
3 Evaluate the model (using 10-fold cross-validation and ROC curves). Figure 5.3

shows the cross-validated ROC curve. It attains an AUC score of 0.81.

5.2.2 Handling date and time features

Next, you’ll use feature engineering to try to improve the results of your first model.
In addition to the data shown in figure 5.2, each event in the dataset has an associ-
ated start_time. This data element is an ISO-8601 UTC string representing when
the event is scheduled to begin. The data field has formatting like 2012-10-02
15:53:05.754000+00:00, representing yyyy-mm-dd hh:mm:ss.mmmmmm_HH:MM.
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Figure 5.3 Cross-validated ROC curve and AUC metric for the simple event-
recommendation model
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 The types of ML models described in chapter 3 can support numerical or categori-
cal input features, of which a datetime string is neither. Therefore, you can’t simply
insert the column of strings directly into the model. What you can do, however, is per-
form transformations of the datetime elements into numerical features that capture
the information encoded within the datetime string. This simple yet powerful con-
cept of feature engineering can enable you to transform each datetime string into a
smattering of features, such as these:

■ Hour of the day
■ Day of the week
■ Month of the year
■ Minute of the hour
■ Quarter of the year

Figure 5.4 shows the first five rows of data that result from converting your single
start_time feature into 10 datetime features.

Next, you build a random forest model on this new, 16-feature dataset. Our cross-
validated ROC curve is shown in figure 5.5. 

 The AUC of the model has increased from 0.81 to 0.85. Clearly, there was hidden
value in the start_time information that, when imbued into the ML model via fea-
ture engineering, helped improve the model’s accuracy. Most likely, events that
occur on particular days of the week and at certain times of day are more popular
than others.
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Figure 5.4 Additional date-time columns extracted from the timestamp column for the event-recommendation dataset
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5.2.3 Working with simple text features

In addition to the time of the event, the data includes basic text features from simple,
natural language–processing routines. In the same way that datetime features can’t
be used directly by the model because they’re neither numerical nor categorical, arbi-
trary text can’t be fed into the ML algorithm without some kind of processing that
turns the data into one of the two accepted types. To turn text into ML features, you
employ a method called bag of words. The idea is simple in principle: count the num-
ber of occurrences of each word that appears in the text and insert a column in the
dataset with the counts for that word. As always, though, you’ll have a few complicat-
ing factors to deal with.

 The features that you feed to your ML algorithm must be homogeneous: there
must be the same number of features, and they must correspond to the same underly-
ing concept, for all of the instances in your dataset. For example, if the first instance
contains five occurrences of the word family, and the next instance doesn’t, you must
choose to either include a column for Family and set the count to 0 for the second
instance, or leave it off both instances. Usually, you work with the entire text corpus of
the dataset to decide which words get a column and which don’t. In most cases, you
build the bag of words for the entire dataset and include only the top-occurring words
to get a column in your dataset. You can then have a catchall column for the rest of
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Figure 5.5 Cross-validated ROC curve for model including date-time features
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the words, which in principle determines the length of the text outside the selected
top words.

 Now, let’s say you’re selecting the top 100 words to get a Counts column in your
dataset. You’ll get a bunch of columns with counts for common but not useful words,
such as is, and, and the. In the field of natural language processing, these words are
known as stop words and are usually purged from the text before performing the bag-
of-words counting.

 We introduce more-advanced text feature concepts in the next chapter, but the last
complicating factor to mention here is that the bag-of-words dataset quickly becomes
large and sparse. We have a lot of features mostly filled with zeros, because a particular
word usually isn’t likely to appear in a random passage of text. The English dictionary
is large (with more than 200 thousand words in use), and only a small fraction of those
words are used in most texts. Some ML problems have a much narrower space, in which
a class of words is more represented than in general. For example, figure 5.6 shows a few
instances of the count features for the top words in our event-recommendation exam-
ple; the sparsity of the data is clear. Some ML algorithms, such as naïve Bayes classifi-
ers, handle sparse data well (by requiring no extra memory for the 0’s), whereas most
others don’t.

In events.csv of our event-recommendation example, 100 features represent the bag
of words for the 100 top-occurring words. You want to use these as features in the
model, because particular events might be more popular than others. Figure 5.7
shows the resulting ROC curve after adding these features to the model.

 The AUC metric in figure 5.7 doesn’t increase from your previous model that
included only basic and date-time features. This tells you that a particular event
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1 0 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

1 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 1 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.6 A slice of the bag-of-words data for the event-recommendation example. These 
numbers are the counts of the top-occurring words in the event descriptions. A large fraction 
of the cells contain 0, so we call the dataset sparse.
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description isn’t more likely to be interesting for users just because of the text. This
model doesn’t address the interests of individual users, but the user base in general.
In a real recommendation engine, you could build a model for each user or each class
of user. Other popular methods for recommendation engines use connections between
events, users, and user friends to find recommendations. 

5.3 Feature selection
Compared to basic statistical methods and human pattern-recognition abilities, one of
the main advantages of machine-learning algorithms is the ability to handle a larger
number of features. Most ML algorithms can handle thousands or millions of features.
It’s often a useful strategy to add more features in order to increase the accuracy of the
model. But in machine learning, as in many other cases, more isn’t always better.

 Because more features enable the model to learn the mapping from features to
the target in more detail, there’s a risk that the model is overfitting the data. This
increases the appeared accuracy of the model at training time, but might hurt the per-
formance of predictions on new, unseen data. Figure 5.8 shows an example of overfit-
ting (we first discussed overfitting in chapter 3). 
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data can be affected.
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In this section, you’ll look at methods for selecting a subset of features in order to
avoid overfitting, and thus increase the accuracy of the model when applied to new
data. Some algorithms are more or less susceptible to overfitting, but it might be
worth the effort to perform some of these optimizations if model accuracy is of partic-
ular importance.

 Another advantage of a smaller number of features, and thus smaller models, is
that the computational cost of training and prediction is usually related to the num-
ber of features. By spending some time in the model-development phase, you can save
time when retraining or when making predictions.

 Finally, feature selection and the related concept of feature importance can help you
gain insight into the model and therefore the data used to build the model. In some
cases, the goal of building the model might not even be to make predictions, but to
get a view into important features of the model; you can use knowledge about the
most significant features to discover certain patterns such as credit status being corre-
lated with certain demographic or social factors. A cost could be associated with
obtaining the data for specific features, and there’s no need to suffer loss if the feature
is unimportant for the model at hand. The importance of particular features can also
reveal valuable insights into the predictions returned by the model. In many real-
world use cases, it’s important to understand something about why a certain predic-
tion was made, and not just the particular answer. 

 With that, you should be well motivated to look more deeply into feature selection
and the most common methods used. The simplest way to select the optimal subset of
features is to try all combinations of features—for example, building a model for all
subsets of features and using your knowledge from chapter 4 to measure the perfor-
mance of the model. Unfortunately, even with a small number of features, this
approach quickly becomes infeasible. You have to use techniques that can approxi-
mate the optimal subset of features. In the next few subsections, you’ll investigate
some of these methods. One of the most widely used classes of methods is forward
selection/backward elimination, covered in the next subsection. Other heuristic
methods are covered later in the chapter.

Some algorithms have built-in feature selection
Although the methods discussed in this section are applicable to any machine-learning
algorithm, some algorithms have advantages in the realm of feature selection because
they have similar behavior built in. In all cases, however, these built-in methods are
unlikely to yield results comparable to the general methods, but might be signifi-
cantly more efficient computationally. As a consequence, it might be useful to try the
built-in methods before falling back on the more computationally intense general
methods, or even use the built-in methods as a seed to save computation time on
the general methods.

Examples of built-in feature-selection methods are the weights assigned to features
in linear and logistic regression algorithms and the feature importances in decision
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5.3.1 Forward selection and backward elimination

One of the most widely used sets of methods for approximating the best subset of fea-
tures is the iterative selection methods that you’ll look into here. The general concept
is to start from no features and iteratively find the best features to add, or start from all
features and iteratively remove the worst. The search is stopped when all features have
been added or removed, when the increase in accuracy levels off, or at a predeter-
mined size of the feature set. 

 These methods are referred to as forward selection and backward elimination, respec-
tively. They don’t guarantee finding the best subset of features, which is why we call it
an approximation. One of the features that was left out, or removed, might have more
predictive power when paired with a particular subset of features that hasn’t yet been
reached when the feature is removed. Remember that the power of machine learning
comes from the ability to find patterns by combining many features. Or said differently,
a weak feature may be strong in the presence of just the right set of other features.

 In practice, however, forward selection or backward elimination works well to find
a good subset of features with a much smaller computational complexity than the
exhaustive search. When the number of features is particularly large, however, even
this approach can be computationally infeasible. In those cases, it might be necessary
to rely on built-in feature importance measures or other search heuristics, which we
present in the next section. 

 The process of forward feature selection is shown in figure 5.9. Depending on
the number of features, many models might need to be built. If the algorithm is run
to the end, you’ll need to build N + (N – 1) + (N – 2)...(N – N + 2) + (N – N + 1), or

trees and ensemble variants such as random forests, which capture (in a computa-
tionally efficient manner) the amount that predictive accuracy is expected to decrease
if a feature were replaced with random noise. We can inspect the top feature impor-
tances of the random forest event-recommendation model from the previous section.

birthyear

Feature Importance

timezone

datetime_week_of_year

datetime_day_of_year

lat

datetime_hour_of_day

lng

The random forest feature 
importances for the top seven 
features in the event-
recommendation model. By this 
measure, the birth year of a user 
and the time zone of the event 
are the two most important 
indicators of whether an event 
will be of interest to a user.
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N–1
i =0(N – i). For 20, 100, 500, or 1,000 features, this is 210; 5,050; 125,250; and 500,500

model builds, respectively. In addition, each cross-validation iteration requires k models
to be built, so if the model build takes any significant amount of time, this also becomes
unmanageable. For smaller sets of features, or when running a smaller number of iter-
ations (for example, because the increase in accuracy quickly levels off), this approach
is effective in practice. 

 Figure 5.10 shows the equivalent process of backward elimination. The computa-
tional requirements are the same as forward selection, so the choice between forward
and backward methods is usually a question of the problem at hand and the choice of
algorithm. Some algorithms, for example, perform worse on a very small set of fea-
tures, in which case backward elimination is the better approach. 
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feature set Figure 5.9 The process of forward 

feature selection. Beginning at the 
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iteratively until the best set of 
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Figure 5.10 The process of 
backward feature elimination
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A useful way to visualize an iterative feature-selection procedure is by plotting a ver-
tical bar chart like the one in figure 5.11. 

As we mentioned previously, some ML algorithms have built-in methods for feature
selection. Instead of making feature selection based on built-in feature rankings,
you can use a hybrid approach in which the built-in feature importance is used to
find the best or worst feature in each iteration of the forward selection or backward
elimination process. This can significantly reduce the computation time when you
have many features, but will likely yield less-accurate approximations of the optimal
feature subset.

5.3.2 Feature selection for data exploration

Feature selection can be used for more than avoiding overfitting or making the model
leaner. A powerful use of feature selection is to gain insight into the model and the
training data. In fact, in some cases, you might want to build a classifier only in order
to run a feature-selection algorithm, and not for making predictions.

 You can use feature selection to perform an exploratory analysis of the data that
was used for building the model. From the feature-selection procedure, you know the
most important features—the most informative set of features for predicting the tar-
get variable from all of the features. This tells you something about the data, which
can be useful by itself. Imagine that your task is to predict whether a patient is likely to
have cancer. Because you’re not certain about the cause of the specific form of cancer,
you add all the features you can get your hands on and use feature selection to find
the top features. You’re not only gaining a better cross-validated accuracy, but also
using the data to indicate which factors are most likely to cause the disease or at least
correlate with the probability of diagnosis. The discussed methods of feature selection

Iteration 4: Feature A added

Iteration 3: Feature B added

Iteration 2: Feature C added

Iteration 1: Feature D added

0 1
Accuracy

Best accuracy

Figure 5.11 The iterative feature-selection bar chart, showing the 
evolution of accuracy in a feature-selection procedure—in this case, a 
forward selection algorithm. Any measure of accuracy (see chapter 4) 
that makes sense for the problem should be used here.
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don’t tell you whether the features are powerful in the positive or negative direction
(in the case of binary classification), but you can easily visualize the specific feature
against the target variable to understand this (for example, using the visualizations in
section 2.3). 

 Another unsupervised use case for feature selection is for dimensionality reduction.
One of the great challenges when working with datasets with more than three vari-
ables is how to visualize the data. The human brain has been optimized for a three-
dimensional world, and we have a hard time grasping more than that. In real-world
data, however, having only three features is extremely unlikely, and you need to
employ various techniques to visualize high-dimensional datasets. You can use feature
selection as a way to show how the ML algorithms can divide the data into classes, for
example, by simply plotting the two or three best features against the target variable.
Figure 5.12 shows an example of a decision boundary shown in two dimensions, even
though many more features were used to build the model.

In the next section, you’ll see an example of how feature selection can be useful in
real-world problems.
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Figure 5.12 This decision boundary for classifying into circles and diamonds 
has only two features. The model was built on many more features, but the 
sqrt(Fare) and Age features were found by the feature-selection algorithm to be 
important in this particular problem (Titanic survival prediction). This plot was 
first introduced in chapter 3.
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5.3.3 Real-world feature selection example

For a great use case of feature engineering and feature selection in the real world,
let’s look at an example from science.

 Your task is to find real supernova events from huge astronomical images among a
large number of so-called bogus events (events that look real, but aren’t). Figure 5.13
shows examples of real and bogus events. 

The real/bogus classifier is built by first processing the raw image data into a set of
features, some of which are discussed in the next chapter. You then run the featurized
data through a random forest algorithm to build the classifier, and perform various
model optimizations such as the ones outlined in chapters 3 and 4. The last part
before putting this model into the live stream from the telescope is to determine the
best features, avoid overfitting, and make the model as small as possible in order to
support the real-time requirements of the project. The feature-selection plot, a
slightly more advanced version of figure 5.11, is shown in figure 5.14.1

1 The supernova images and data graphs in this section originally appeared in the 2013 Monthly Notices of the
Royal Astronomical Society, volume 435, issue 2, pages 1047-1060 (http://mnras.oxfordjournals.org/content/
435/2/1047).

Figure 5.13 Real supernova images are shown in the panel on the left. Bogus candidate events are shown in the 
panel on the right.1 The job of the classifier is to learn the difference between these two types of candidates from 
features extracted from the images. (These are obvious examples; many others are hard to classify, even for 
trained persons.)

http://mnras.oxfordjournals.org/content/435/2/1047
http://mnras.oxfordjournals.org/content/435/2/1047
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Now, by knowing which features are most important for the model, you can plot
these features against real and bogus events in order to visualize how a particular
feature helps solve the problem. Figure 5.15 shows the performance of four of the
best features.

2. Performance becomes
much worse as too many
features are removed.

3. All features above
dashed line are selected
for the final model.

1. As features are removed
performance improves
(smaller is better), then
levels off.

Figure 5.14 The feature-selection plot showing a backward elimination process. Each feature from the bottom 
up was selected for removal as the algorithm progressed, and in each step the customized evaluation metric of 
missed detection rate (MDR) at 1% false-positive rate (FPR) was computed. The bars show the performance 
metric obtained at each step (smaller is better in this case) by removing the feature (with standard deviation 
from cross-validation). After removing 23 features (out of 44), the cross-validated performance gain levels off 
and eventually becomes much worse when too many features have been removed. In the end, a significant 5 
percentage points were gained in model performance by removing noisy features.
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5.4 Summary
This chapter introduced feature engineering, which transforms raw data to improve
the accuracy of ML models. The primary takeaways from this chapter are as follows:

■ Feature engineering is the process of applying mathematical transformations to
raw data to create new input features for ML modeling. The transformations
can range from simple to extremely complex.

■ Feature engineering is valuable for the following five reasons:
– It can create features that are more closely related to the target variable.
– It enables you to bring in external data sources.
– It allows you to use unstructured data.
– It can enable you to create features that are more interpretable.
– It gives you the freedom to create lots of features and then choose the best

subset via feature selection.
■ There’s an intricate link between feature engineering and domain knowledge.
■ Feature engineering fits into the overall ML workflow in two places:

– On the training dataset, prior to fitting a model
– On the prediction dataset, prior to generating predictions

■ Two types of simple feature engineering can be used on a problem of event
recommendation:
– Extraction of features from date-time information
– Feature engineering on natural language text

■ Feature selection is a rigorous way to select the most predictive subset of fea-
tures from a dataset.

3 6 9
gauss amp

12 –1 0 1 14 16
mag_ref

2018 0 2 64 2.5 5.0 10.07.5
flux_ratio ccid

Bogus eventsReal events

Figure 5.15 Visualization of the performance of four individual features chosen by our feature-selection algorithm 
to be among the best features for our model. The histograms show the number of real or bogus events that take 
on a particular value of the feature. You can see that the distributions of real versus bogus events are different in 
the amp and flux_ratio features, and they’re selected as the top-performing features in our feature-selection 
procedure.
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5.5 Terms from this chapter

Chapter 7 expands on the simple feature-engineering approaches presented here so
you can perform more-advanced feature engineering on data such as text, images, and
time series. In the next chapter we’ll use what we've learned in a full-chapter example.

Word Definition

feature engineering Transforming input data to extract more value and improve the predictive accu-
racy of ML models

feature selection Process of choosing the most predictive subset of features out of a larger set

forward selection A version of feature selection that iteratively adds the feature that increases 
the accuracy of model the most, conditional on the current active feature set

backward elimination A version of feature selection that removes the feature that decreases the 
accuracy of model the most, conditional on the current active feature set

bag of words A method for turning arbitrary text into numerical features for use by the ML 
algorithm



Part 2

Practical application

In part 2, you’ll go beyond a basic ML workflow to look at how to extract fea-
tures from text, images, and time-series data to improve the accuracy of models
even further, and to scale your ML system to larger data volumes. In addition,
you’ll go through three full example chapters to see everything in action.

 In chapter 6, our first full example chapter, you’ll try to predict the tipping
behavior of NYC taxis.

 In chapter 7, you’ll look at advanced feature-engineering processes that allow
you to extract value out of natural language text, images, and time series data.
A lot of modern ML and artificial intelligence applications are based on these
techniques.

 In chapter 8, you’ll use this advanced feature-engineering knowledge in
another full example: predicting the sentiment of online movie reviews.

 In chapter 9, you’ll learn techniques for scaling ML systems to larger volumes
of data, higher prediction throughput, and lower prediction latency. These are
all important aspects of many modern ML deployments.

 In chapter 10, you’ll walk through a full example of building a model—on
large amounts of data—that predicts online digital display advertisement clicks.





Example: NYC taxi data
In the previous five chapters, you learned how to go from raw, messy data to build-
ing, validating, and optimizing models by tuning parameters and engineering fea-
tures that capture the domain knowledge of the problem. Although we’ve used a
variety of minor examples throughout these chapters to illustrate the points of the
individual sections, it’s time for you to use the knowledge you’ve acquired and work
through a full, real-world example. This is the first of three chapters (along with
chapters 8 and 10) entirely dedicated to a full, real-world example.

This chapter covers
■ Introducing, visualizing, and preparing a real-

world dataset about NYC taxi trips
■ Building a classification model to predict

passenger tipping habits
■ Optimizing an ML model by tuning model

parameters and engineering features
■ Building and optimizing a regression model to

predict tip amount
■ Using models to gain a deeper understanding

of data and the behavior it describes
129
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 In the first section of this chapter, you’ll take a closer look at the data and various
useful visualizations that help you gain a better understanding of the possibilities of
the data. We explain how the initial data preparation is performed, so the data will be
ready for the modeling experiments in the subsequent sections. In the second section,
you’ll set up a classification problem and improve the performance of the model by
tuning model parameters and engineering new features. 

6.1 Data: NYC taxi trip and fare information
With companies and organizations producing more and more data, a large set of rich
and interesting datasets has become available in recent years. In addition, some of
these organizations are embracing the concept of open data, enabling the public dis-
semination and use of the data by any interested party.

 Recently, the New York State Freedom of Information Law (FOIL) made avail-
able an extremely detailed dataset of New York City taxi trip records from every taxi
trip of 2013.1 This dataset collected various sets of information on each individual
taxi trips including the pickup and drop-off location, time and duration of the trip,
distance travelled, and fare amount. You’ll see that this data qualifies as real-world
data, not only because of the way it has been generated but also in the way that it’s
messy: there are missing data, spurious records, unimportant columns, baked-in
biases, and so on.

 And speaking of data, there’s a lot of it! The full dataset is over 19 GB of CSV data,
making it too large for many machine-learning implementations to handle on most
systems. For simplicity, in this chapter you’ll work with a smaller subset of the data. In
chapters 9 and 10, you’ll investigate methods that are able to scale to sizes like this and
even larger, so by the end of the book you’ll know how to analyze all 19 GB of data.

 The data is available for download at www.andresmh.com/nyctaxitrips/. The
dataset consists of 12 pairs of trip/fare compressed CSV files. Each file contains about
14 million records, and the trip/fare files are matched line by line. 

 You’ll follow our basic ML workflow: analyzing the data; extracting features; build-
ing, evaluating, and optimizing models; and predicting on new data. In the next
subsection, you’ll look at the data by using some of the visualization methods from
chapter 2.

6.1.1 Visualizing the data

As you get started with a new problem, the first step is to gain an understanding of
what the dataset contains. We recommend that you start by loading the dataset and
viewing it in tabular form. For this chapter, we’ve joined the trip/fare lines into a sin-
gle dataset. Figure 6.1 shows the first six rows of data.

1 Initially released in a blog post by Chris Wong: http://chriswhong.com/open-data/foil_nyc_taxi/.

http://chriswhong.com/open-data/foil_nyc_taxi/
http://www.andresmh.com/nyctaxitrips/
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medallion

CD847FE5884F10A28217E9FBA11B275B

20D9ECB2CA0767CF7A01564DF2844A3E
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hack_license
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fare_amount

3.50

2.50

7.00

12.00

12.00

5.50

11.00

surcharge

0.00

0.00

0.00

0.50

0.50
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Figure 6.1 The first six rows of the NYC taxi trip and fare record data. Most of the columns are self-explanatory, 
but we introduce some of them in more detail in the text that follows.
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The medallion and hack_license columns look like simple ID columns that are use-
ful for bookkeeping but less interesting from an ML perspective. From their column
names, a few of the columns look like categorical data, like vendor_id, rate_code,
store_and_fwd_flag, and payment_type. For individual categorical variables, we
recommend visualizing their distributions either in tabular form or as bar plots. Fig-
ure 6.2 uses bar plots to show the distribution of values in each of these categorical
columns.

Next, let’s look at some of the numerical columns in the dataset. It’s interesting to
validate, for example, that correlations exist between things like trip duration
(trip_time_in_secs), distance, and total cost of a trip. Figure 6.3 shows scatter plots
of some of these factors plotted against each other.

Logarithmic axes

91 2 5 4 3 0 6 210

rate_code

8 128 28 7 65CMT VTS

vendor_id

UNKCRD CSH NOC DIS

payment_type

N Y

store_and_fwd_flag

Figure 6.2 The distribution of values across some of the categorical-looking columns in our dataset
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Finally, in figure 6.4, you can visualize the pickup locations in the latitude/longitude
space, defining a map of NYC taxi trips. The distribution looks reasonable, with most
pickup locations occurring in downtown Manhattan, many occurring in the other bor-
oughs, and surprisingly a few happening in the middle of the East River!
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Figure 6.3 Scatter plots of taxi trips for the time in seconds versus the trip 
distance, and the time in seconds versus the trip amount (USD), respectively. 
A certain amount of correlation exists, as expected, but the scatter is still 
relatively high. Some less-logical clusters also appear, such as a lot of zero-time 
trips, even expensive ones, which may indicate corrupted data entries.
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With a fresh perspective on the data you’re dealing with, let’s go ahead and dream up
a realistic problem that you can solve with this dataset by using machine learning.

6.1.2 Defining the problem and preparing the data

When we first looked at this data, a particular column immediately grabbed our
attention: tip_amount. This column stores the information about the amount of the
tip (in US dollars) given for each ride. It would be interesting to understand, in
greater detail, what factors most influence the amount of the tip for any given NYC
taxi trip. 

 To this end, you might want to build a classifier that uses all of the trip information
to try to predict whether a passenger will tip a driver. With such a model, you could
predict tip versus no tip at the end of each trip. A taxi driver could have this model
installed on a mobile device and would get no-tip alerts and be able to alter the situa-
tion before it was too late. While you wait for approval for having your app installed
in all NYC taxis, you can use the model to give you insight into which parameters are
most important, or predictive, of tip versus no tip in order to attempt to boost overall
tipping on a macro level. Figure 6.5 shows a histogram of the tip amount across all
taxi trips.
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Figure 6.4 The latitude/longitude of pickup locations. Note that the x-axis is flipped, compared to 
a regular map. You can see a huge number of pickups in Manhattan, falling off as you move away 
from the city center.
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So the plan for our model is to predict which trips will result in no tip, and which will
result in a tip. This is a job for a binary classifier. With such a classifier, you’ll to be able
to do the following: 

■ Assist the taxi driver by providing an alert to predicted no-tip situations
■ Gain understanding of how and why such a situation might arise by using the

dataset to uncover the driving factors (pun intended!) behind incidence of tip-
ping in NYC taxi rides

A STORY FROM THE REAL WORLD

Before you start building this model, we’ll tell you the real story of how our first
attempt at tackling this problem was quite unsuccessful, disguised as very successful—
the worst kind of unsuccessful—and how we fixed it. This type of detour is extremely
common when working with real data, so it’s helpful to include the lessons learned
here. When working with machine learning, it’s critical to watch out for two pitfalls: too-
good-to-be-true scenarios and making premature assumptions that aren’t rooted in the data. 

 As a general rule in ML, if the cross-validated accuracy is higher than you’d have
expected, chances are your model is cheating somewhere. The real world is creative
when trying to make your life as a data scientist difficult. When building initial tip/
no-tip classification models, we quickly obtained a very high cross-validated predictive
accuracy of the model. Because we were so excited about the model performance on
this newly acquired dataset—we nailed it—we temporarily ignored the warnings of a
cheating model. But having been bitten by such things many times before, the overly
optimistic results caused us to investigate further. 

 One of the things we looked at was the importance of the input features (as you’ll
see in more detail in later sections). In our case, a certain feature totally dominated in
terms of feature importance in the model: payment type. 
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Figure 6.5 The distribution of tip 
amount. Around half the trips yielded 
$0 tips, which is more than we’d 
expect intuitively.
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 From our own taxi experience, this could make sense. People paying with credit
cards (in the pre-Square era) may have a lower probability of tipping. If you pay with
cash, you almost always round up to whatever you have the bills for. So we started seg-
menting the number of tips versus no tips for people paying with a credit card rather
than cash. Alas, it turned out that the vast majority (more than 95%) of the millions of
passengers paying with a credit card did tip. So much for that theory. 

 So how many people paying with cash tipped? All of them?
 In actuality, none of the passengers paying with cash had tipped! Then it quickly

became obvious. Whenever a passenger paid with cash and gave a tip, the driver didn’t
register it in whatever way was necessary for it to be included as part of our data. By
going through our ML sanity checks, we unearthed millions of instances of potential
fraud in the NYC taxi system!

 Returning to the implications for our ML model: in a situation like this, when
there’s a problem in the generation of the data, there’s simply no way to trust that
part of the data for building an ML model. If the answers are incorrect in nefarious
ways, then what the ML model learns may be completely incorrect and detached
from reality. 

 Ultimately, to sidestep the problem, we opted to remove from the dataset all trips
paid for with cash. This modified the objective: to predict the incidence of tipping for
only noncash payers. It always feels wrong to throw away data, but in this case we
decided that under the new data-supported assumption that all cash-payment data was
untrustworthy, the best option was to use the noncash data to answer a slightly differ-
ent problem. Of course, there’s no guarantee that other tip records aren’t wrong as
well, but we can at least check the new distribution of tip amounts. Figure 6.6 shows
the histogram of tip amounts after filtering out any cash-paid trips.

 With the bad data removed, the distribution is looking much better: only about 5%
of trips result in no tip. Our job in the next section is to find out why.
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Figure 6.6 The distribution of tip 
amounts when omitting cash payments 
(after discovering that cash tips are 
never recorded in the system)
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6.2 Modeling
With the data prepared for modeling, you can easily use your knowledge from chapter
3 to set up and evaluate models. In the following subsections, you’ll build different
versions of models, trying to improve the performance with each iteration.

6.2.1 Basic linear model

You’ll start this modeling endeavor as simply as possible. You’ll work with a simple,
logistic regression algorithm. You’ll also restrict yourself initially to the numerical val-
ues in the dataset, because those are handled by the logistic regression algorithm nat-
urally, without any data preprocessing.

 You’ll use the scikit-learn and pandas libraries in Python to develop the model.
Before building the models, we shuffled the instances randomly and split them into
80% training and 20% holdout testing sets. You also need to scale the data so no col-
umn is considered more important than others a priori. If the data has been loaded
into a pandas DataFrame, the code to build and validate this model looks something
like the following listing.

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import roc_curve, roc_auc_score
from pylab import *

sc = StandardScaler()
data_scaled = sc.fit_transform(data[feats])

sgd = SGDClassifier(loss="modified_huber")

sgd.fit(
    data.ix[train_idx,feats],  
    data['tipped'].ix[train_idx]  
)

preds = sgd.predict_proba(
    data.ix[test_idx,feats]   
)

fpr, tpr, thr = roc_curve(
    data['tipped'].ix[test_idx],   
    preds[:,1]   
)
auc = roc_auc_score(data['tipped'].ix[test_idx], preds[:,1])

plot(fpr,tpr)
plot(fpr,fpr)
xlabel("False positive rate")
ylabel("True positive rate")

Listing 6.1 Logistic regression tip-prediction model 

Scales the data to be 
between –1 and 1

Uses loss-function 
that handles 
outliers wellFits the classifier on 

the training features 
and target data

Makes predictions on 
the held-out test set

Calculates ROC 
curve and AUC 
statistics

Plots ROC 
curve
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The last part of listing 6.1 plots the ROC curve for this first, simple classifier. The hold-
out ROC curve is shown in figure 6.7.

There’s no way around it: the performance of this classifier isn’t good! With a holdout
AUC of 0.51, the model is no better than random guessing (flipping a coin weighted
95% “tip” and 5% “no tip” to predict each trip), which is, for obvious reasons, not use-
ful. Luckily, we started out simply and have a few ways of trying to improve the perfor-
mance of this model.

6.2.2 Nonlinear classifier

The first thing you’ll try is to switch to a different algorithm—one that’s nonlinear.
Considering how poor the first attempt was, it seems that a linear model won’t cut
it for this dataset; simply put, tipping is a complicated process! Instead, you’ll use a
nonlinear algorithm called random forest, well known for its high level of accuracy
on real-world datasets. You could choose any of a number of other algorithms (see
the appendix), but we’ll leave it as an exercise for you to evaluate and compare dif-
ferent algorithms. Here’s the code (relative to the previous model) for building
this model.
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Figure 6.7 The receiver operating characteristic (ROC) curve of the logistic 
regression tip/no-tip classifier. With an area under the curve (AUC) of 0.5, 
the model seems to perform no better than random guessing. Not a good sign 
for our model.
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from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_curve, roc_auc_score
from pylab import *

rf = RandomForestClassifier(n_estimators=100)
rf.fit(data.ix[train_idx,feats], data['tipped'].ix[train_idx])
preds = rf.predict_proba(data.ix[test_idx,feats])

fpr, tpr, thr = roc_curve(data['tipped'].ix[test_idx], preds[:,1])
auc = roc_auc_score(data['tipped'].ix[test_idx], preds[:,1])

plot(fpr,tpr)
plot(fpr,fpr)
xlabel("False positive rate")
ylabel("True positive rate")

fi = zip(feats, rf.feature_importances_)
fi.sort(key=lambda x: -x[1])
fi = pandas.DataFrame(fi, columns=["Feature","Importance"])   

The results of running the code in listing 6.2 are shown in figure 6.8. You can see a sig-
nificant increase in holdout accuracy—the holdout AUC is now 0.64—showing clearly
that there’s a predictive signal in the dataset. Some combinations of the input features
are capable of predicting whether a taxi trip will yield any tips from the passenger. If
you’re lucky, further feature engineering and optimization will be able to boost the
accuracy levels even higher.

Listing 6.2 Random forest tip-prediction model 

Plots ROC 
curve
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Figure 6.8 The ROC curve of the nonlinear random forest model. The AUC is 
significantly better: at 0.64, it’s likely that there’s a real signal in the dataset.
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You can also use the model to gain insight into what
features are most important in this moderately predic-
tive model. This exercise is a crucial step for a couple of
reasons:

■ It enables you to identify any cheating features
(for example, the problem with noncash pay-
ers) and to use that as insight to rectify any
issues.

■ It serves as a launching point for further fea-
ture engineering. If, for instance, you identify
latitude and longitude as the most important
features, you can consider deriving other fea-
tures from those metrics, such as distance from
Times Square. Likewise, if there’s a feature that
you thought would be important but it doesn’t
appear on the top feature list, then you’ll want
to analyze, visualize, and potentially clean up or
transform that feature.

Figure 6.9 (also generated by the code in listing 6.2)
shows the list of features and their relative impor-
tance for the random forest model. From this figure, you can see that the location
features are the most important, along with time, trip distance, and fare amount. It
may be that riders in some parts of the city are less patient with slow, expensive
rides, for example. You’ll look more closely at the potential insights gained in sec-
tion 6.2.5.

 Now that you’ve chosen the algorithm, let’s make sure you’re using all of the raw
features, including categorical columns and not just plain numerical columns.

6.2.3 Including categorical features

Without going deeper into the realm of feature engineering, you can perform some
simple data preprocessing to increase the accuracy. 

 In chapter 2, you learned how to work with categorical features. Some  ML algo-
rithms work with categorical features directly, but you’ll use the common trick of
“Booleanizing” the categorical features: creating a column of value 0 or 1 for each of
the possible categories in the feature. This makes it possible for any ML algorithm to
handle categorical data without changes to the algorithm itself.

 The code for converting all of the categorical features is shown in the following
listing.
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Figure 6.9 The important 
features of the random forest 
model. The drop-off and pickup 
location features seem to 
dominate the model.
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res 
 

def cat_to_num(data):
    categories = unique(data)
    features = {}
    for cat in categories:

binary = (data == cat)
features["%s:%s"%(data.name, cat)] = binary.astype("int")    

    return pandas.DataFrame(features)

payment_type_cats = cat_to_num(data['payment_type'])
vendor_id_cats = cat_to_num(data['vendor_id'])
store_and_fwd_flag_cats = cat_to_num(data['store_and_fwd_flag'])  
rate_code_cats = cat_to_num(data['rate_code'])

data = data.join(payment_type_cats)
data = data.join(vendor_id_cats)
data = data.join(store_and_fwd_flag_cats)
data = data.join(rate_code_cats)

After creating the Booleanized columns, you run the data through listing 6.2 again
and obtain the ROC curve and feature importance list shown in figure 6.10. Note that
your holdout AUC has risen slightly, from 0.64 to 0.656.

 As model performance increases, you can consider additional factors. You haven’t
done any real feature engineering, of course, because the data transformations applied
so far are considered basic data preprocessing.

Listing 6.3 Converting categorical columns to numerical features

Function for 
converting a 
categorical 
column to 
a set of 
numerical 
columns

Converts four 
categorical featu
in the dataset to
numerical

Adds the converted 
data to the full 
dataset used for 
training and testing

0.0

0.8

0.2 0.4 0.6 0.8 1.0

1.0

0.2

0.4

0.6

0.0

False-positive rate

Area under the curve (AUC) = 0.656

New features

0

Feature Importance

1

2

3

4

dropoff_latitude

pickup_latitude

dropoff_longitude

pickup_longitude

0.163023

0.161114

0.160988

0.158672

trip_time_in_secs 0.111172

5

6

7

8

9

trip_distance

fare_amount

passenger_count

surcharge

0.106693

0.067567

0.019286

0.010330

payment_type:NOC 0.008361

10 payment_type:CRD 0.008247

Tr
ue

-p
os

iti
ve

 ra
te

Random
baseline

Curve

Figure 6.10 The ROC curve and feature importance list of the random forest model with all categorical 
variables converted to Boolean (0/1) columns, one per category per feature. The new features are bringing 
new useful information to the table, because the AUC is seen to increase from the previous model without 
categorical features.
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6.2.4 Including date-time features

At this point, it’s time to start working with the data to produce new features, what
you’ve previously known as feature engineering. In chapter 5, we introduced a set of
date-time features transforming date and timestamps into numerical columns. You
can easily imagine the time of the day or day of the week to have some kind of influ-
ence on how a passenger will tip.

 The code for calculating these features is presented in the following listing.

# Datetime features (hour of day, day of week, week of year)

pickup = pandas.to_datetime(data['pickup_datetime'])
dropoff = pandas.to_datetime(data['dropoff_datetime'])   
data['pickup_hour'] = pickup.apply(lambda e: e.hour)
data['pickup_day'] = pickup.apply(lambda e: e.dayofweek)   
data['pickup_week'] = pickup.apply(lambda e: e.week)
data['dropoff_hour'] = dropoff.apply(lambda e: e.hour)
data['dropoff_day'] = dropoff.apply(lambda e: e.dayofweek)    
data['dropoff_week'] = dropoff.apply(lambda e: e.week)

With these date-time features, you can build a new model. You run the data through
the code in listing 6.2 once again and obtain the ROC curve and feature importance
shown in figure 6.11.

Listing 6.4 Date-time features

Converts date-time 
columns (text) to 
real dates and times

Adds hour, day, 
and week features 
to pickup times

Adds hour, day, 
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to drop-off times
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Figure 6.11 The ROC curve and feature importance list for the random forest model, including all categorical 
features and additional date-time features
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You can see an evolution in the accuracy of the model with additional data preprocess-
ing and feature engineering. At this point, you’re able to predict whether a passenger
will tip the driver with an accuracy significantly above random. Up to now, you’ve
looked only at improving the data in order to improve the model, but you can try to
improve this model in two other ways: 

■ Vary the model parameters to see whether the default values aren’t necessarily
the most optimal

■ Increase the dataset size

In this chapter, we’ve been heavily subsampling the dataset in order for the algorithms
to handle the dataset, even on a 16 GB–memory machine. We’ll talk more about scal-
ability of methods in chapters 9 and 10, but in the meantime we’ll leave it to you to
work with this data to increase the cross-validated accuracy even further!

6.2.5 Model insights

It’s interesting to gain insight about the data through the act of building a model to
predict a certain answer. From the feature importance list, you can understand which
parameters have the most predictive power, and you use that to look at the data in new
ways. In our initial unsuccessful attempt, it was because of inspection of the feature
importance list that we discovered the problem with the data. In the current working
model, you can also use the list to inspire some new visualizations. 

 At every iteration of our model in this section, the most important features have
been the pickup and drop-off location features. Figure 6.12 plots the geographical dis-
tribution of drop-offs that yield tips from the passenger, as well as drop-offs from trips
that don’t.
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Figure 6.12 The geographical distribution of drop-offs
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Figure 6.12 shows an interesting trend of not tipping when being dropped off closer
to the center of the city. Why is that? One possibility is that the traffic situation creates
many slow trips, and the passenger isn’t necessarily happy with the driver’s behavior.
As a non–US-citizen, I have another theory. This particular area of the city has a high
volume of both financial workers and tourists. We’d expect the financial group to be
distributed farther south on Manhattan. There’s another reason that tourists are the
most likely cause of this discrepancy, in my mind: many countries have vastly different
rules for tipping than in the United States. Some Asian countries almost never tip, and
many northern European countries tip much less, and rarely in taxis. You can make
many other interesting investigations based on this dataset. The point is, of course,
that real-world data can often be used to say something interesting about the real
world and the people generating the data.

6.3 Summary
This chapter introduced a dataset from the real world and defined a problem suitable
for the machine-learning knowledge that you’ve built up over the previous five chap-
ters. You went through the entire ML workflow, including initial data preparation, fea-
ture engineering, and multiple iterations of model building, evaluation, optimization,
and prediction. The main takeaways from the chapter are these:

■ With more organizations producing vast amounts of data, increasing amounts
of data are becoming available within organizations, if not publicly.

■ Records of all taxi trips from NYC in 2013 have been released publicly. A lot of
taxi trips occur in NYC in one year!

■ Real-world data can be messy. Visualization and knowledge about the domain
helps. Don’t get caught in too-good-to-be-true scenarios and don’t make prema-
ture assumptions about the data.

■ Start iterating from the simplest possible model. Don’t spend time on prema-
ture optimization. Gradually increase complexity.

■ Make choices and move on; for example, choose an algorithm early on. In an
ideal world, you’d try all combinations at all steps in the iterative process of
building a model, but you’d have to fix some things in order to make progress.

■ Gain insights into the model and the data in order to learn about the domain
and potentially improve the model further.
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6.4 Terms from this chapter

Word Definition

open data Data made available publicly by institutions and organizations.

FOIL Freedom of Information Law. (The federal version is known as the Free-
dom of Information Act, or FOIA.)

too-good-to-be-true scenario If a model is extremely accurate compared to what you would have 
thought, chances are that some features in the model, or some data 
peculiarities, are causing the model to “cheat.”

premature assumptions Assuming something about the data without validation, risking biasing 
your views of the results.



Advanced feature
engineering
You explored the basic concepts behind feature engineering in chapter 5 and
applied simple feature-engineering techniques to real-world data in chapter 6. In
this chapter, you’ll look at more-sophisticated techniques that you can use when
faced with types of data that have become common in today’s world. The two most
important of these are text and images. This chapter presents advanced techniques
for extracting features from text and image data, in order to use this data in your
machine-learning pipelines. 

7.1 Advanced text features
You already looked at simple feature engineering for text data in chapter 5.
This section provides more details about the ideas behind these techniques, and

This chapter covers
■ Using advanced feature-engineering concepts

to increase the accuracy of your machine-
learning system

■ Extracting valuable features from text by using
natural-language-processing techniques

■ Extracting meaning from images and using them
as features in your machine-learning project
146
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presents more-advanced concepts that can improve the accuracy of your models
even further.

 Recall that your mission in extracting features from text is to somehow convert
texts of various lengths and words into a common set of features. In chapter 5, you
learned about the bag-of-words representation, in which you count the occurrences of
words across all texts and use the counts of the top-N words as N new features. This
work of transforming natural-language text into machine-usable data is commonly
referred to as natural language processing, or NLP.

7.1.1 Bag-of-words model

Bag of words is one of the simplest but also most widely used techniques in NLP. It’s a
great approach to start with for any text-based problem. It’s also the basis of many other
more advanced methods that you’ll look at later in this chapter. You’ll learn about this
model in two parts: first, tokenization and transformation, and then vectorization. 

TOKENIZATION AND TRANSFORMATION

The splitting of a text into pieces is known as tokenization. The most common way to
split is on words, but in some cases (for example, in character-based languages), you
may want to split on characters or split on pairs or groups of words or even some-
thing more advanced. Groups of words in a split are known as n-grams. Two- or three-
word combinations are known as bigrams and trigrams, respectively (and they’re the
most common after one-word unigrams). Bigrams in the example in figure 7.1 include

Split text
(e.g., on words)

The quick brown fox jumps over the lazy dog.

The lazy brown fox jumps over the dog.

Process words
(e.g., lowercase)

Count
occurrences

Defined
vocabulary

foxbrownquick lazy dogoverjumpsthe

221 2 2224

Text 1

Text 2

Tokenization

Transformation 

Figure 7.1 The initial steps in the bag-of-words extraction algorithm
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“the lazy,” “brown fox,” and so forth. Trigrams include “brown fox jumps” and “jumps
over the.”

 Expanding to multiple words may help your models in some cases, by offering
more contextualization of the text. But using multiple words also typically inflates the
number of features quite dramatically. In practice, you usually start with only unigram
representations. If you want to move to higher-grade grams, you have to make sure to
use an ML algorithm that handles sparse data. You’ll learn more about that in the fol-
lowing subsection.

 The next step in our bag-of-words algorithm is to make any transformations neces-
sary to the tokens extracted from the text. A good example of a transformation is con-
verting all words to lowercase, such that you don’t produce features for both “fox” and
“Fox,” which may add to the noise of the model. In some cases, however, you may want
to preserve the case, if it makes sense in your project (for example, if proper names
are common in the text and highly predictive, or if ALL CAPS is meaningful). Stem-
ming—which strips word suffixes—can also be a powerful transformation for extract-
ing more signals out of different words with similar meanings. Using stemming, for
instance, causes the words “jump,” “jumping,” “jumps,” and “jumped” to all be expressed
as the token “jump” in your dictionary. Other transformations such as custom han-
dling of numbers, punctuation, and special characters can also be useful, depending
on the text at hand.

 Next, you can define the dictionary that you’ll generate your text features from.
For machine-learning projects, it’s common to set a limit on the number of features,
hence the number of words, in your dictionary. This is usually done by sorting by the
word occurrences and using only the top-N words.

VECTORIZATION

You can use your bag-of-words dictionary to generate features to use in your ML mod-
els. After defining the dictionary, you can convert any text to a set of numbers corre-
sponding to the occurrences of each dictionary word in the text. Figure 7.2 shows this
process, which is called vectorization.

 But there’s a problem that we haven’t discussed yet. Most natural-language texts
include many words that aren’t important for understanding the topic, but are simply
“filling.” These include words such as “the,” “is,” and “and.” In NLP research, these are
called stop words, and they’re usually removed from the dictionary as they typically aren’t
highly predictive of anything interesting and can dilute the more meaningful words that
are important from an ML perspective. With our words already sorted by occurrences,
the usual way to remove stop words is to throw away all words with more occurrences
than a certain word-count threshold. Figure 7.2 shows an example; a larger text (the
third row in the figure) has a much larger count of the word “the” than any of the other
words. The challenge, then, is to define the threshold at which a particular word is a
stop word and not a meaningful word. Most NLP libraries, such as the NLTK Python
library, include prebuilt stop-word lists for a range of languages so you don’t have to do
this every time. In some cases, though, the list of stop words will be different for your



149Advanced text features
specific project, and you’ll need to choose a stop-word threshold (a standard choice is to
exclude any words that appear in more than 90% of all documents).

 Although not apparent in figure 7.2, any realistic dictionary will have many words,
and usually only a small subset of those will be present in the texts that you’re generat-
ing features for. This combination usually makes text features include lots of zeros.
Only a small number of the dictionary words will be found in a given text, so we call
the bag-of-words features sparse. If you have many sparse features (it’s common to have
1,000 features with only a small percent nonzero elements), it’s a good idea to choose
an ML algorithm that can handle sparse features natively, or an algorithm that can
deal with many low-significance features without sacrificing accuracy. The naïve Bayes
algorithms in the scikit-learn Python library handle sparse data natively, and are there-
fore well suited for text-classification problems. Algorithms such as random forest are
known to handle lots of low-significance features well, although your mileage may
vary. You should always test the efficacy of different methods by using the evaluation
and optimization techniques discussed in chapter 4.

7.1.2 Topic modeling

The bag-of-words method is simple to understand and implement. But other, more-
advanced methods could lead to big increases in ML model accuracy. This section
introduces three of those methods. 

 One problem with the bag-of-words model is the nature of simple word counts. If a
certain word (not a stop word) is common in a corpus—for example, the word “data”
in a corpus of ML papers—it’s not necessarily informative to know that the word also
appears in a new text. Instead, you’d do better by focusing on relatively rare words

Defined
vocabulary

Vectorization

foxbrownquick lazy dogoverjumpsthe

111 1 1112

110 1 1112

1088 6 66465

Text 1

Text 2

Wikipedia page
about “quick brown
fox” pangram.

Figure 7.2 Using the vocabulary, you can now represent each text as a list of numbers. The rows show 
the count for the two small texts in figure 7.1 and the count for the Wikipedia page about the sentence 
“The quick brown fox jumps over the lazy dog,” which is an English pangram (it includes all letters in 
the English alphabet).
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that are more highly predictive of the outcome of interest. To this end, it’s common to
scale the word counts by the inverse of the total count of that word in the corpus.
Because you want to describe a text the best you can using only numbers, and a word
that isn’t abundant in the training corpus but is abundant in a new document is likely
more indicative of the meaning of the new document, you’re better off giving prefer-
ential treatment to that rare word.

TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

A commonly used algorithm that tries to solve this exact problem is called term fre-
quency–inverse document frequency, or tf-idf for short. This algorithm is calculated as a
product of the term frequency (tf) and the inverse document frequency (idf).

 The tf can be calculated in different ways, but the simplest is to use the number of
times a word occurs in a particular document. It’s also common to use other versions
of the tf factor, such as binary (1 if the word is in a document, and 0 otherwise) and
logarithmic (1 + log[tf]). 

 The inverse document frequency is calculated as the logarithm of the total num-
ber of documents, divided by the number of documents that contain the term, so that
relatively uncommon words attain higher values. In its simplest form, the tf-idf equa-
tion looks like this:

Tf-idf can be powerful for generating good ML features from any corpus of text. It can
also be useful in other areas, such as search. Because you’re generating a vector of num-
bers for any document, you can also find “distances” between documents, as distances
between their tf-idf vector representations. If the user search query is a document, you
can find the distances between any other documents in your dataset in this way, and
hence return a ranked list of documents to the user based on the query. Listing 7.1 in
the next section shows how to use the scikit-learn Python library to generate tf-idf vectors
from documents, along with a more advanced technique called latent semantic indexing.

LATENT SEMANTIC ANALYSIS

Latent semantic analysis, or LSA (also commonly called latent semantic indexing, or LSI)
is a more sophisticated method of topic modeling. It’s also more advanced both con-
ceptually and computationally. The idea is to use the bag-of-word counts to build a
term-document matrix, with a row for each term and a column for each document.
The elements of this matrix are then normalized similarly to the tf-idf process in order
to avoid frequent terms dominating the power of the matrix. 

 The main trick of the LSA algorithm is in its notion of a concept. A concept is a pat-
tern of similar terms in the document corpus. For example, the concept of “dog” may
have related terms (words, in this case) of “barking,” “leash,” and “kennel.” The algo-
rithm doesn’t label the concept “dog” but instead figures out which words are related by
their co-occurrence in documents and then ascertains that these words are connected

tf idf term,doc,docs – count term in doc  count docs 
count docs with term 
----------------------------------------------------------=
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ct 
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through a certain abstract concept. The word “dog” may itself be an important term
related to the “dog” concept. These topics are considered hidden or latent in the data,
hence the name latent semantic analysis.

 LSA uses singular value decomposition (SVD)1—a well-known mathematical tool—to
split the term-document matrix (A) into three matrices (T,S,D). T is the term-concept
matrix that relates the terms (for example, “barking” and “kennel”) to concepts (for
example, “dog”), and D is the concept-document matrix that relates individual docu-
ments to concepts that you’ll later use to extract the features from the LSA model.
The S  matrix  holds the singular values. In LSA, these denote the relative importance
that a term has to a document. In the same way as you restricted the number of fea-
tures in the bag-of-words and tf-idf algorithms, you can now select the top singular val-
ues and restrict the feature space to something more manageable; recall that the
term-document matrix (A) can be extremely large and sparse.

 Using the top-N components of the SVD, you generate N features for your ML
model by taking the corresponding rows from the concept-document matrix (D). When
new documents come in for prediction, you can generate a new set of features from the
previously learned LSA model by performing the matrix multiplication: D = ATTS–1.
Here AT is the word count (or tf-idf), using the defined dictionary, for the new docu-
ment, and T and S are the term-concept and singular-value matrices from the SVD.

 Although it’s useful to understand the principles of LSA, not everyone knows lin-
ear algebra well enough to do these calculations. Luckily, plenty of implementations
can readily be used in your ML project. The scikit-learn Python library includes the
functionality needed to run LSA by (1) using tf-idf to generate the term-document
matrix, (2) performing the matrix decomposition, and (3) transforming the docu-
ments to vectors, as shown in the following listing.

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD

def latent_semantic_analysis(docs):
  tfidf = TfidfVectorizer()
  tfidf.fit(docs)
  vecs = tfidf.transform(docs)
  svd = TruncatedSVD(n_components=100)
  svd.fit(vecs)
  return svd.transform(vecs)    

1 For readers familiar with principal component analysis (which is presented later in this chapter), SVD is the
same technique that enables you to compute PCA coordinates from a dataset.  You can think of LSA as “PCA
for bag of words.”

Listing 7.1 Latent semantic analysis using scikit-learn

Initializes the tf-idf obje
using default parameter

Creates the tf-idf 
dictionary from 
documents

Uses the dictionary 
to generate a tf-idf 
feature matrix

Initializes the LSA object, 
using 100 coordinatesCreates SVD 

matrices
Computes LSA features

for all documents
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Next, you’ll look at a few advanced extensions to LSA that have recently become pop-
ular in the field of topic modeling.

PROBABILISTIC METHODS

LSA is based on linear algebra (math with vectors and matrices), but an equivalent
analysis can be done using probabilistic methods that model each document as a sta-
tistical mixture of topic distributions. These concepts are all relatively advanced, and
we won’t go into the mathematical details here, but the probabilistic approach can
perform better in terms of model accuracy for some datasets.

 The probabilistic analogue to LSA is known as pLSA (for probabilistic). A more
widely used version of this is called latent Dirichlet analysis (LDA), in which specific
assumptions are made on the distribution of topics. You build in the assumption
that a document can be described by a small set of topics and that any term (word)
can be attributed to a topic. In practice, LDA can perform well on diverse datasets.
The following code listing highlights how LDA can be used in Python using the
Gensim library.

import gensim.models.ldamodel.LdaModel

def lda_model(docs):
  return LdaModel(docs, num_topics=20)

def lda_vector(lda_model, doc):
  return lda_model[doc]

The number of topics used in the LDA model is a parameter that needs to be tuned to
the data and problem at hand. We encourage you to define your performance metric
and use the techniques in chapter 4 to optimize your model. It’s also worth noting
that the LDA in Gensim can be updated on the fly with new documents if new training
data is coming in continuously. We encourage you to check out the many other inter-
esting natural-language and topic-modeling algorithms in Gensim. In chapter 10,
you’ll use some of these advanced text-feature-extraction techniques to solve a real-
world machine-learning problem. The next section introduces a completely different
method for text-feature extraction: expanding the content of the text.

7.1.3 Content expansion

We now turn to a completely different concept for extracting features from text. The
methods of this section don’t represent the text with numbers, but rather expand the
text content to include more text (which can then be featurized) or to introduce
other useful information for the specific ML problem. The following are some com-
mon content-expansion methods.

Listing 7.2 Latent Dirichlet analysis in Python using Gensim

Must install Gensim first, by 
running “pip install gensim”

Builds LDA model, setting the 
number of topics to extract

Generates features 
for a new document
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FOLLOW LINKS

If you’re looking to build an ML classifier by extracting text features from tweets (for
instance, for a Twitter sentiment analysis that classifies a post as positive or negative in
sentiment), you’ll often find the 140-character limit problematic. You might not have
enough information to obtain the desired accuracy of the model. 

 Many tweets contain links to external web pages that can hold much more text,
and that you could expand the tweet with the text from the link in order to improve
the quality of the data. You could even follow links deeper on the web page to build a
larger corpus of text.

KNOWLEDGE-BASE EXPANSION

A more advanced text-extension method is to detect named entities in the text and
extend the original text with information about each named entity in an online
knowledge base, such as Wikipedia. In this situation, named entities would be any-
thing that you could look up on Wikipedia. You’d then grab the text from the Wikipe-
dia entry for that named entity and perform any of the text-extraction algorithms
from section 7.1.2.

 Extracting named entities isn’t a trivial task, and has been the subject of several
research groups. One of the issues stems from ambiguous names. If one word could
have multiple meanings, you risk expanding your feature set with completely wrong
information. One possible solution is to disambiguate the named entities again by
using a knowledge base like Wikipedia. First of all, you could assume that any other
words in the tweet, for example, would also be common in the knowledge-base text.
You could also use the Wikipedia link graph to find how close two named entities fall
in the knowledge base. An example is a tweet that includes the named entity “Tesla.”
Some tweets will relate to the electronic car company, whereas others will be about
inventor Nikola Tesla. If the tweet contains the word “car” or “model,” it’s most likely
about Tesla, the company. If it contains the related entity of “Edison,” it might be
about the person (Tesla and Edison worked together in NYC in 1884).

TEXT META-FEATURES

Another technique for extending the text features with valuable data is to analyze the
text for meta-features. Unlike the previously discussed techniques, these types of fea-
tures are problem-dependent. 

 Let’s take the example of tweets again. A tweet contains all sorts of valuable data
that’s particular to tweets and can be extracted, such as hashtags and mentions, as
well as meta-information from Twitter, such as counts of retweets and favorites. As
another example for web-based text, you could extract basic information from link
text, such as the top-level domain. In general text, you could extract the count of
words or characters or the number of special characters in different languages.
Extracting the language could be an ML classifier itself that provides the answer as a
feature to another classifier. 

 To choose the right text meta-features, you should use your imagination and
knowledge of the problem at hand. Remember that the ML workflow is an iterative
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process; you can develop a new feature, go back through the pipeline, and analyze
how the accuracy is improved over time.

 You can use the text to get at other types of data as well. The text might include
dates and times that could be useful for the ML model to understand, or there may be
time information in the metadata of the text. Chapter 5 presented date-time feature
extractions, which can be used in this context as well.

 If you’re analyzing a web page, or there’s a URL in the text, you may have access to
images or videos that are important for understanding the context of the text. Extract-
ing features from images and videos requires even more-advanced techniques, which
you’ll investigate next.

7.2 Image features
One of the strongholds of human intelligence is our visual and spatial sense and our
ability to recognize patterns and objects in images and the 3D scenes we navigate
every day. Much of the way we think is based on these abilities. Computers, on the
other hand, think in bits and their visual analogue, pixels. Historically, this fact has
severely limited computers’ ability to match human levels of cognition when it comes
to visual pattern recognition. Only with the advent of sophisticated algorithms in com-
puter vision and artificial intelligence—from which machine learning has arguably
sprung—are researchers and practitioners getting closer to reaching human levels,
although most often in narrowly specified areas. On the other hand, if you can get
close to matching human-level pattern recognition accuracy with computer vision and
machine-learning techniques, you can reap some of the benefits of most computa-
tional systems: scalability, availability, and reproducibility. 

 This section presents a few ways to extract features from images that can be used in
your ML workflows. First, you’ll look at simple image features including raw pixels,
colors, and image metadata.

7.2.1 Simple image features

The simplest way to deal with images is worth mentioning, not only because it may
sometimes be enough, but also because it shows the true power of the machine-learning
approach, as compared to manual or conventional statistical approaches. You treat
the values of pixels in the image as the features that go into your ML model.

 In practice, you make a single row with all the pixels, converting the two-dimensional
image into one dimension. If it’s a color image, you have basically three images in one
(red, blue, green channels). Normal pixel values are 0.0 to 1.0, or 0 to 255 (for 8-bit
images). You may have guessed that for any modern image, this creates thousands or
millions of features that will increase the computational requirements and potentially
lead to overfitting, hence affecting the accuracy. That’s why this approach isn’t often
used in practice. Still, you’d probably be surprised how well this can work without any
sophisticated feature engineering for some ML problems, such as classifying indoor
versus outdoor images.
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 In principle, all the information is encoded in the pixels. If you’re not going to use
the raw pixels for performance reasons (computationally or accuracy-wise), you have
to find a way to represent the image with fewer features that works well enough for
your specific problem. This is exactly the same problem you were solving in the previ-
ous section on text features and many other feature-engineering techniques. Toward
the end of section 7.2.2, we introduce some new methods for automatic feature
extraction, but most current practical ML projects on images use some of the tech-
niques described in this section.

COLOR FEATURES

Let’s say you’re trying to classify images into categories based on the landscape of the
images. Categories could be sky, mountain, or grass, for example. In this case, it sounds
useful to represent the images by the constituent colors. You can calculate simple
color statistics of each color channel of the image, such as mean, median, mode, standard
deviation, skewness, and kurtosis. This leads to 6 x 3 = 18 features for common RGB (red-
green-blue channel) images.

 Another set of features representing colors in the images are the color ranges of
the image. Table 7.1 shows a list of possible color ranges that will cover much of the
color space.

IMAGE METADATA FEATURES

In addition to color information, the image may contain metadata that’s helpful for
your problem. Most photographs, for example, include EXIF data that’s recorded by
the camera at the time the picture was taken. If you’re building a model to predict
whether an image is considered interesting or beautiful to a user, the algorithm could
use the brand of the camera and the lens, the value of the aperture, and the zoom
level. Table 7.2 outlines image metadata features that may be useful.

Table 7.1 Examples of color-range features. You add 1 to the divisors to avoid producing missing values
from dividing by 0. 

Color range Definition

Red range Max value in red channel minus min value in red channel

Red-to-blue range Red range / (max value in blue channel minus min value in blue channel plus 1)

Blue-to-green range (Min value in blue channel minus max value in blue channel) / (min value in green 
channel minus max value in green channel plus 1)

Red-to-green range Red range / (max value in green channel minus min value in green channel plus 1)

Table 7.2 Image metadata features that can be included in the ML pipeline

Feature Definition

Manufacturer The company that made the camera

Orientation The orientation of the camera (landscape or portrait)
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With these simple features, you might be able to solve quite a few machine-learning
problems that have images as part of the data. Of course, you haven’t represented any
of the shapes or objects in the image, which will, for obvious reasons, be important for
many image-classification problems! The next section introduces more-advanced
computer-vision techniques commonly used to represent objects and shapes.

7.2.2 Extracting objects and shapes

So far, you haven’t considered objects or shapes when extracting information from
images. In this subsection, you’ll look at a few ways to represent shapes with numerical
features that can be automatically extracted via statistical and computational methods.

EDGE DETECTION

Probably the simplest way to represent shapes in images is to find their edges and
build features on those. Figure 7.3 shows an example of edge detection in an image.

Date-time Time of the shooting (use the date-time features introduced in chapter 5)

Compression How the image is compressed (usually JPEG or RAW) 

Resolution The number of pixels in the width and height dimensions

Aspect ratio A measurement indicated by dividing the height and width resolutions

Exposure time The number or fraction of seconds of exposure

Aperture The f-number representing the aperture (for example, 2.8 or 4.0)

Flash Whether the flash was on

Focal length The distance from the lens to the point of focus

Table 7.2 Image metadata features that can be included in the ML pipeline (continued)

Feature Definition

Input image Canny edge-detection algorithm

Figure 7.3 Applying the Canny edge-detection algorithm to a photo of a girl (input on left) produces 
a new binary image (on right) with only the edges traced. (Image by JonMcLoone at English Wikipedia, 
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=44894482.)

https://commons.wikimedia.org/w/index.php?curid=44894482
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Several well-known algorithms can find edges in an image. Some of the most com-
monly used are the Sobel and Canny edge-detection algorithms. Figure 7.3 shows the
Canny algorithm.

Now that you’ve extracted edges from images, you can extract features from those
edges. The simplest way is to calculate a number that represents the total number of
edges in an image. If edges is your edge images and res is the resolution of the image,
the equation is as follows:

Together with other features, this may be useful in determining objects of interest.
You can define other edge-based features depending on your use case. For example,
you could choose to calculate the preceding edge score for multiple parts of the
image in a grid.

ADVANCED SHAPE FEATURES

More-sophisticated feature-extraction algorithms that can be used to detect particular
shapes and objects exist. One of these is the histogram of oriented gradients (HOG). In
machine learning, these algorithms can be used to detect human faces or particular
animals in images, for example.

 The HOG algorithm is a multistep process of various image-processing tech-
niques. The goal of the algorithm is to describe shapes and objects in image regions
that aren’t too sensitive to small changes in scale and orientation. This is achieved
as follows:

1 Calculate the gradient image (which direction the edges of the image are
“moving”)

2 Divide the image into small blocks called cells

Image processing in Python with scikit-image
We’ve mentioned the scikit-learn Python library a few times in this book already, as
it provides an easy way to try many machine-learning algorithms. The analogue to this
in the computer-vision and image-processing world is scikit-image. This is an equally
useful way to try algorithms that we talk about in this section. 

If you’re using Pip, scikit-image can easily be installed with the following:

$ pip install scikit-image

Here’s a simple example of using this library for edge detection:

>>> import skimage
>>> image = skimage.data.camera()
>>> edges = skimage.filter.sobel(image)

edge_score edges
resx resy
-----------------------=
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3 Calculate the orientation of the gradients inside those cells
4 Calculate the histogram of those orientations in the individual cells 

Usually, larger blocks of the image are defined from the smaller cells and used for
normalization of the gradient values in the cells. In this way, you can avoid being too
sensitive to changes in lighting or shadows. Each cell can then be flattened into a list
of features that describe the shapes in the image and can be used in the ML pipeline.

 As usual, you’re concerned with understanding the usefulness of the algorithms
from a practical perspective, and so you can go ahead and use an already implemented
library for HOG features. The scikit-image Python library has an easy-to-use version of
HOG. The following listing shows how to calculate HOG features for an image. Fig-
ure 7.4 shows the result of the HOG transformation applied to a photograph of Ameri-
can astronaut Eileen Collins, the first female commander of a Space Shuttle.

import skimage

image = skimage.color.rgb2gray(skimage.data.astronaut())
hog = skimage.feature.hog(image, orientations=9, pixels_per_cell=(8,8),

cells_per_block=(3,3), normalise=True, visualise=True)

Here you see how to calculate HOG features easily while defining the number of ori-
entations to consider, the size of the cells in pixels, the size of the blocks in cells, and
whether to normalize and visualize the result. 

Listing 7.3 Histogram of oriented gradients in Python with scikit-image

Input image Histogram of oriented gradients

Figure 7.4 Applying the HOG transformation. This image is from the HOG example page on scikit-
image documentation (http://scikit-image.org/docs/dev/auto_examples/features_detection/
plot_hog.html#sphx-glr-auto-examples-features-detection-plot-hog-py).

http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html#sphx-glr-auto-examples-features-detection-plot-hog-py
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html#sphx-glr-auto-examples-features-detection-plot-hog-py
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 With HOG features, you have a powerful way to find objects in images. As with
everything, in certain cases, HOG doesn’t work well—for instance, when the object
changes orientation significantly. You should make proper tests of the ML system as
usual to determine usefulness for the problem at hand.

DIMENSIONALITY REDUCTION

We’re almost always in the game of dimensionality reduction when performing fea-
ture extraction, except perhaps for the content-expansion methods in the previous
section. But a few techniques are commonly used for dimensionality reduction in gen-
eral, and the most widely used is called principal component analysis (PCA).

 PCA allows you to take a set of images and find “typical” images that can be used as
building blocks to represent the original images. Combining the first couple of princi-
pal components enables you to rebuild a large portion of the training images, whereas
subsequent components will cover less-frequent patterns in the images. Features for a
new image are generated by finding the “distance” from a principal image, thus repre-
senting the new image by a single number per principal image. You can use as many
principal components as make sense in your ML problem. 

 PCAs are known to be linear algorithms; they can’t represent inherently nonlinear
data. There are several extensions to PCA or other types of nonlinear dimensionality
reduction. An example that we’ve had good experiences with is diffusion maps.

AUTOMATIC FEATURE EXTRACTION

A renaissance has occurred in the world of artificial neural networks. Invented in
the ’80s and inspired by the biology of the brain, these networks were at the center
of the artificial intelligence field that has evolved into the machine-learning field
we know today. For a few decades, they were considered useful methods for some
ML problems. But because they were hard to configure and interpret, had prob-
lems with overfitting, and were less computationally scalable, they ended up as a
last resort when real-world problems needed solving. Now, several breakthroughs
in machine-learning research have mostly taken care of these issues. Deep neural
nets (DNNs) are now considered state of the art for many ML problems, but espe-
cially those that deal with images, video, or voice. Figure 7.5 shows the layout of a
neural net.

Hidden

Input

Output

Figure 7.5 A simple artificial neural network. 
Deep neural nets are made of many layers of these 
simple networks. (Image from Wikipedia.)
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In DNNs, each layer is capable of defining a set of new features that are useful for the
problem at hand. The weights between nodes then define the importance of those
features for the next layer, and so forth. This approach was traditionally prone to over-
fitting, but recently developed techniques allow for the removal of node connections
in a way that the accuracy is maintained while decreasing the risk of overfitting.

 The use of DNNs, also known as deep belief networks or deep learning, is still a relatively
new field. We encourage you to follow its development.

7.3 Time-series features
Many datasets that are amassed by modern data-collection systems come in the form
of time series, measurements of a process or set of processes across time. Time-series
data is valuable because it provides a window into the time-varying characteristics of
the subjects at hand and enables ML practitioners to move beyond employing static
snapshots of these subjects to make predictions. But fully extracting the value out of
time-series data can be difficult. This section describes two common types of time-
series data—classical time series and point processes (event data)—and details some
of the most widely used time-series features.

7.3.1 Types of time-series data

There are two main types of time-series data: classical time series and point processes.
Classical time series consist of numerical measurements that are taken over time. Typi-
cally, these measurements are evenly spaced over time (hourly, daily, weekly, and so
forth) but can also consist of irregularly sampled data. These are examples of classical
time-series data:

■ The value of the stock market, in billions of dollars (for example, measured
hourly, daily, or weekly)

■ The day-to-day energy consumption of a commercial building or residential home
■ The value, in dollars, of a client’s bank account over time
■ Sets of diagnostics monitored in an industrial manufacturing plant (for exam-

ple, physical performance measurements of different parts or measurements of
plant output over time)

Point processes, on the other hand, are collections of events that occur over time. As
opposed to measuring numerical quantities over time, point processes consist of a
timestamp for each discrete event that happens, plus (optionally) other metadata
about the event such as category or value. For this reason, point processes are also
commonly referred to as event streams. Examples of point processes include the
following:

■ The activity of a web user, measuring the time and type of each click (this is also
called clickstream data)

■ Worldwide occurrences of earthquakes, hurricanes, disease outbreak, and so forth
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■ The individual purchases made by a customer throughout the history of their
account

■ Event logs in a manufacturing plant, recording every time an employee touches
the system and every time a step in the manufacturing process is completed

An astute reader may note that for some time series, a one-to-one mapping exists
between the classical time-series representation and the underlying point process. For
example, a customer’s bank account can easily be viewed either as the value of the
account over time (classical time series) or as a list of the individual transactions
(point process). This correspondence can be useful in creating various types of time-
series features on a single dataset. But the conversion isn’t always possible. (For exam-
ple, it’s difficult to imagine what a classical time-series related to simple web clicks
would be.)

 To make this more concrete, let’s look at time-series data that can be just as easily
viewed as a point process or a time series. Table 7.3 shows the first few rows of a crime
dataset from San Francisco, collected between 2003 and 2014 (dataset publicly avail-
able at https://data.sfgov.org). In all, the dataset consists of more than 1.5 million
crimes that occurred in the city. For each crime, the data includes the exact date and
time of the crime, type of crime, and location.

You can aggregate this raw data into classical time-series data in a multitude of ways: by
year, by month, by day of week, and so on, potentially with a different time series for
each district or category. Listing 7.4 demonstrates how to aggregate the raw event data
into a time series of the monthly number of crimes in San Francisco. The resulting
time series of integer crime count by month is plotted in figure 7.6. The data shows a

Table 7.3 San Francisco crime data in its raw form, as a sequence of events

Incident number Date Time District Category

80384498 04/13/2008 00:54    NORTHERN DRUNKENNESS  

80384147 04/13/2008 00:55     CENTRAL NONCRIMINAL  

80384169 04/13/2008 00:56     BAYVIEW ASSAULT  

80384169 04/13/2008 00:56     BAYVIEW DRUG/NARCOTIC  

80384153 04/13/2008 00:57     BAYVIEW OTHER 

80384175 04/13/2008 01:00     CENTRAL ASSAULT  

80384943 04/13/2008 01:00     CENTRAL LARCENY/THEFT  

80392532 04/13/2008 01:00   INGLESIDE LARCENY/THEFT  

80384943 04/13/2008  01:00 CENTRAL FRAUD  

80384012 04/13/2008  01:15    NORTHERN SUSPICIOUS OCC  

https://data.sfgov.org
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marked decline from the rate of 13,000 crimes per month in 2003, and a recent uptick
in crime activity.

import pandas as pd
from datetime import datetime
from matplotlib import pyplot as plt

df = pd.read_csv("sfpd_incident_all.csv")

df['Month'] = map(lambda x: datetime.strptime("/".join(x.split("/")[0::2]),
"%m/%Y"),df['Date'])

df_ts = df.groupby('Month').aggregate(len)["IncidntNum"]

plt.plot(df_ts.index,df_ts.values,'-k',lw=2)
plt.xlabel("Month")
plt.ylabel("Number of Crimes")

Listing 7.4 Converting SF crime event data to classical time series
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Figure 7.6 Classical time series of monthly crime count in San Francisco. This data was 
processed from the raw event data. For ML modeling, you can derive features from the 
event data, the classical time series, or both.
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series



163Time-series features
7.3.2 Prediction on time-series data
Just as there are two common types of time-series data, there are also two common types
of predictions that you can make from time-series data. The first is time-series forecasting,
which attempts to predict future values of the time series (or times of future events)
based on past measurements. Time-series forecasting problems include the following:

■ Predicting tomorrow’s price of a stock
■ Predicting tomorrow’s temperature in Phoenix, Arizona
■ Forecasting next year’s energy consumption in Denmark
■ Forecasting the date of the next major hurricane in North America

The first three of these tasks involve predicting future values of a classical time series,
whereas the fourth is a prediction on a point-process dataset. The common thread is
that each task involves analyzing the values of a single time series to make predictions
about the future. Note that the vast majority of literature on time-series forecasting
falls under the branch of time-series analysis, whereas comparatively little attention
has been focused here by ML practitioners (though that is changing). For further
details, any Google or Amazon search will reveal an abundance of results!

 The second common type of time-series prediction is time-series classification or regres-
sion. Instead of predicting future values of a single time series, the aim here is to clas-
sify (or predict a real-valued output on) hundreds or thousands of time series.
Examples of this type of problem include the following:

■ Using each user’s online clickstream to predict whether each user will click a
specific ad

■ Employing a time series of QA measurements to determine which of a set of
manufactured goods (for example, lightbulbs) are most likely to fail in the
next month

■ Predicting the lifetime value of each user of an online app based on each user’s
in-app activity stream from the first week after sign-up

■ Predicting which patients are most likely to suffer post-op complications based
on their medical records

Unlike time-series forecasting, ML has had a large influence on time-series classifica-
tion and regression. The following section focuses primarily on creating time-series
features for classification/regression purposes, but many of those methods can also be
applied for time-series forecasting.

7.3.3 Classical time-series features
This section describes several of the most common feature-engineering approaches
for classical time series. We start with the simplest time-series metrics and describe
progressively more complicated and sophisticated approaches.

SIMPLE TIME-SERIES FEATURES

It may sound absurd, but the simplest time-series metrics involve ignoring the time
axis altogether! Analyzing the distribution of measurements without considering the
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timestamps can often provide useful information for classification, regression, or fore-
casting. For discussion purposes, we outline four simple (yet powerful) metrics that
involve only the marginal distribution of time-series measurements:

■ Average—The mean or median of the measurements can uncover tendencies in
the average value of a time series.

■ Spread—Measurements of the spread of a distribution, such as standard devia-
tion, median absolute deviation, or interquartile range, can reveal trends in the
overall variability of the measurements.

■ Outliers—The frequency of time-series measurements that fall outside the range
of the typical distribution (for example, larger than two, three, or four standard
deviations from the mean) can carry predictive power in many use cases, such
as prediction of process-line interruptions or failures.

■ Distribution—Estimating the higher-order characteristics of the marginal distri-
bution of the time-series measurements (for example, skew or kurtosis), or
going a step further and running a statistical test for a named distribution (for
example, normal or uniform), can be predictive in some scenarios.

You can make things more sophisticated by computing windowed statistics, which entails
calculating the preceding summary metrics within a specified time window. For instance,
the mean or standard deviation of only the last week of measurements may be highly
predictive. From there, you can also compute windowed differences, which would be the
difference in those metrics from one time window to the next. The following listing
presents a code example of computing those features.

import pandas as pd
from datetime import datetime
import numpy as np

window1 = (datetime(2014,3,22),datetime(2014,6,21)) 

idx_window = np.where(map(lambda x: x>=window1[0] and x<=window1[1], 
df_ts.index))[0] 

mean_window = np.mean(df_ts.values[idx_window])    
std_window = np.std(df_ts.values[idx_window])

window2 = (datetime(2013,3,22),datetime(2013,6,21)) 

idx_window2 = np.where(map(lambda x: x>=window2[0] and x<=window2[1], 
df_ts.index))[0]

   mean_wdiff = mean_window - np.mean(df_ts.values[idx_window2])  
std_wdiff = std_window - np.std(df_ts.values[idx_window2])

Listing 7.5 Windowed statistics and differences
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ADVANCED TIME-SERIES FEATURES

Next, you move to more-sophisticated classical time-series features. Autocorrelation fea-
tures measure the statistical correlation of a time series with a lagged version of itself.
For example, the one-autocorrelation feature of a time series takes the original time
series and correlates it with the same time series shifted over by one time bin to the
left (with nonoverlapping portions removed). By shifting the time series like this, you
can capture the presence of periodicity and other statistical structure in the time
series. The shape of the autocorrelation function (autocorrelation computed over a
grid of time lags) captures the essence of the structure of the time series. In Python,
the statsmodels module contains an easy-to-use autocorrelation function. Figure 7.7
shows how the autocorrelation is computed and plots an autocorrelation function for
the SF crime data.

 Fourier analysis is one of the most commonly used tools for time-series feature engi-
neering. The goal of Fourier analysis is to decompose a time series into a sum of sine
and cosine functions on a range of frequencies, which are naturally occurring in many
real-world datasets. Performing this decomposition enables you to quickly identify
periodic structure in the time series. The Fourier decomposition is achieved by using
the discrete Fourier transform, which computes the spectral density of the time series—
how well it correlates to a sinusoidal function at each given frequency—as a function
of frequency. The resulting decomposition of a time series into its component spectral
densities is called a periodogram. Figure 7.8 shows the periodogram of the San Fran-
cisco crime data, computed using the scipy.signal.periodogram function (several
Python modules have methods for periodogram estimation). From the periodogram,
various ML features can be computed, such as the spectral density at specified fre-
quencies, the sum of the spectral densities within frequency bands, or the location of
the highest spectral density (which describes the fundamental frequency of oscillation
of the time series). The following listing provides example code for periodogram
computation and features. 

import pandas as pd
import numpy as np
import scipy.signal

f, psd = scipy.signal.periodogram(df_ts, detrend='linear') 

plt.plot(f, psd,'-ob')
plt.xlabel('frequency [1/month]')
plt.ylabel('Spectral Density')
plt.show()

# Features:
period_psd1 = 1./f[np.argmax(psd)] 

sdens_gt_12m = np.sum(psd[f > 1./12]) 

sdens_ratio_12m = float(sdens_gt_12m) / np.sum(psd[f <= 1./12]) 

Listing 7.6 Periodogram features
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atio of
ectral
ensity
higher
han to
s than

1/12
onths
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Several classical time-series models are commonly used in the time series analysis liter-
ature. The purpose of these models is to describe each value of the time series as a
function of the past values of the time series. The models themselves have been widely
used for time-series forecasting for decades. Now, as machine learning has become a
mainstay in time-series data analysis, they’re often used for prediction in conjunction
with more-sophisticated ML models such as SVMs, neural nets, and random forests.
Examples of time-series models include the following:

■ Autoregressive (AR) model—Each value in the time series is modeled as a linear
combination of the last p values, where p is a free parameter to be estimated.

■ Autoregressive–moving average (ARMA) model—Each value is modeled as the sum
of two polynomial functions: the AR model and a moving-average (MA) model
that’s a linear combination of the previous q error terms.

■ GARCH model—A model commonly used in financial analysis that describes the
random noise terms of a time series using an ARMA model.

■ Hidden Markov model (HMM)—A probabilistic model that describes the observed
values of the time series as being drawn from a series of hidden states, which
themselves follow a Markov process.
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Figure 7.8 Left: Periodogram of the San Francisco crime data, showing the spectral density as a function of 
frequency. Right: The same periodogram with the x-axis transformed from frequency to period.
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You can use these models to compute time-series features in various ways, including
these:

■ Using the predicted values from each of the models (and the differences
between the predictions) as features themselves

■ Using the best-fit parameters of the models (for example, the values of p and q
in an ARMA(p,q) model) as features

■ Calculating the statistical goodness-of-fit (for example, mean-square error) of a
model and using it as a feature

In this way, a blend of classical time-series models and state-of-the-art machine-learning
methodologies can be achieved. You can attain the best of both worlds: if an ARMA
model is already highly predictive for a certain time series, the ML model that uses
those predictions will also be successful; but if the ARMA model doesn’t fit well (as for
most real-world datasets), the flexibility that the ML model provides can still produce
highly accurate predictions.

7.3.4 Feature engineering for event streams

This section presents a brief look at feature engineering for event streams. As shown
previously in listing 7.4, event data can be converted to a classical time series. This
enables you to employ all the feature-engineering processes described in the pre-
ceding two sections to extract classical time-series data on point-process data. But a
number of additional features can be computed on event data because of its finer
granularity.

 Analogous to the windowed statistics described in section 7.1.3, you can compute
simple windowed and difference statistics on event data. But because point-process
data allows an individual timestamp of each and every event, you can compute these
statistics on any time window that you want, down to an extremely fine granularity.
Further, statistics such as “time since last event,” “number of events in the past 48
hours,” and “average length of time between events” suddenly become possible.

 Finally, just as classical time series are often modeled with statistical models like
ARMA and HMM, point-process data is often described with models such as Pois-
son processes and nonhomogeneous Poisson processes. In a nutshell, these models
describe the rate of incoming events as a function of time and enable you to pre-
dict the expected time until the next event. Feel free to explore these methods
more on your own! Just as with the classical time-series models, machine-learning
features can be derived from point-process models in three ways: using the predic-
tions from the model, the parameters of the model, and the statistical goodness-of-fit
of the model.

7.4 Summary
In this chapter, you looked at methods for generating features from text and
images. You can use these features in your ML algorithms to build models that are
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capable of “reading” or “seeing” with human-level perception. The main takeaways
are as follows:

■ For text-based datasets, you need to transform variable-length documents to a
fixed-length number of features. Methods for this include the following:

– Simple bag-of-words methods, in which particular words are counted for
each document.

– The tf-idf algorithm, which takes into account the frequency of words in the
entire corpus to avoid biasing the dictionary toward unimportant-but-common
words.

– More-advanced algorithms for topic modeling, such as latent semantic analy-
sis and latent Dirichlet analysis.

– Topic-modeling techniques can describe documents as a set of topics, and
topics as a set of words. This allows sophisticated semantic understanding of
documents and can help build advanced search engines, for example, in
addition to the usefulness in the ML world.

– You can use the scikit-learn and Gensim Python libraries for many interesting
experiments in the field of text extraction.

■ For images, you need to be able to represent characteristics of the image with
numeric features:

– You can extract information about the colors in the image by defining color
ranges and color statistics.

– You can extract potentially valuable image metadata from the image file itself;
for example, by tapping into the EXIF metadata available in most image files.

– In some cases, you need to be able to extract shapes and objects from images.
You can use the following methods:
■ Simple edge-detection-based algorithms using Sobel or Canny edge-

detection filters
■ Sophisticated shape-extraction algorithms such as histogram of oriented

gradients (HOG)
■ Dimensionality reduction techniques such as PCA
■ Automated feature extraction by using deep neural nets

■ Time-series data comes in two flavors: classical time series and point processes.
A plethora of ML features can be estimated from this data.

– Two principal machine-learning tasks are performed on time-series data:
■ Forecasting the value of a single time series
■ Classifying a set of time series

– For classical time series, the simplest features involve computing time-
windowed summary statistics and windowed differences.

– More-sophisticated features involve the statistical characterization of the
time series, using tools such as autocorrelation and Fourier analysis.
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– Various classical time-series models can be used to derive features. These
include AR, ARMA, GARCH, and HMM.

– From point-process data, you can compute all these features and more,
because of the finer granularity of the data.

– Common models for point-process data include Poisson processes and non-
homogeneous Poisson processes.

7.5 Terms from this chapter

Word Definition

feature engineering Transforming input data to extract more value and improve the predictive 
accuracy of ML models.

natural language processing The field that aims to make computers understand natural language.

bag of words A method for transforming text into numbers; counting the number of 
occurrences of a particular word in a document.

stop words Words that are common but not useful as a feature (for example, “the,” 
“is,” “and”).

sparse data When data consists of mostly 0s and few data cells, we call the data 
sparse. Most NLP algorithms produce sparse data, which you need to 
use or transform for your ML algorithms.

tf-idf Term-frequency, inverse-document frequency. A bag-of-words method 
that’s normalized by text from the entire corpus.

latent semantic analysis A method for finding topics of interest in documents and connecting them 
to a set of words.

latent Dirichlet analysis An extension of the idea from LSA that works well with many text prob-
lems in practice.

content expansion The process of expanding the original content into more data (for exam-
ple, by following links in a document).

meta-features A set of features that aren’t extracted from the content itself, but some 
connected metadata.

EXIF data A standard for defining metadata on images. Includes information about 
the photo (for example, manufacturer of the camera, resolution, aperture).

edge detection The process of detecting edges in images to remove the noise of most 
images.

HOG Histogram of oriented gradients. An approach to image features that 
understands particular shapes and objects.

PCA Principal component analysis. A way to represent images by simpler, typi-
cal images, thus reducing the number of dimensions in images. Instead 
of 100 pixels, an image can be approximated by two numbers: the dis-
tance to the two most principal components.
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deep neural nets An extension to artificial neural nets that has recently shown to perform 
well for machine learning on audiovisual data.

classical time series Series of numerical measurements over time. 

point process Series of events collected over time, each with a precise timestamp 
known.

time-series forecasting Predicting future values of an individual time series.

periodogram Plot of the Fourier power spectral density of a time series as a function of 
frequency of oscillation. This technique can reveal the fundamental 
modes of oscillation and is a useful feature-engineering tool for time-
series data.

Word Definition



Advanced NLP example:
movie review sentiment
In this chapter, you’ll use some of the advanced feature-engineering knowledge
acquired in the previous chapter to solve a real-world problem. Specifically, you’ll
use advanced text and NLP feature-engineering processes to build and optimize a
model based on user-submitted reviews of movies.

 As always, you’ll start by investigating and analyzing the dataset at hand to
understand the feature and target columns so you can make the best decisions
about which feature-extraction and ML algorithms to use. You’ll then build the

This chapter covers
■ Using a real-world dataset for predicting

sentiment from movie reviews
■ Exploring possible use cases for this data and

the appropriate modeling strategy
■ Building an initial model using basic NLP

features and optimizing the parameters
■ Improving the accuracy of the model by

extracting more-advanced NLP features
■ Scaling and other deployment aspects of using

this model in production
172
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initial model from the simplest feature-extraction algorithms to see how you can
quickly get a useful model with only a few lines of code. Next, you’ll dig a little deeper
into the library of feature-extraction and ML modeling algorithms to improve the
accuracy of the model even further. You’ll conclude by exploring various deployment
and scalability aspects of putting the model into production. 

8.1 Exploring the data and use case
In this chapter, you’ll use data from a competition on Kaggle—a data-science chal-
lenge site where data scientists from around the world work on solving well-defined
problems posed by companies to win prizes. You’ll work with this data as you learn to
use the tools developed in the previous chapters to solve a real-world problem via
machine learning.

 The data used in this chapter is from the Bag of Words Meets Bags of Popcorn com-
petition (www.kaggle.com/c/word2vec-nlp-tutorial). You need to create an account on
the Kaggle platform to download the data, but that’s probably a good thing because you
might want to try your newly acquired ML skills on a big-prize competition anyway!

 In the following sections, we begin by describing the dataset, what the individual
columns mean, and how the data was generated. Next, we dive a level deeper, present
the data attributes, and make some initial observations about the data that we have.
From here, we brainstorm possible use cases that we could solve with the dataset at
hand and review the data requirements and real-world implications of each potential
use case. Finally, we use this discussion to select a single use case that we’ll solve in the
remainder of the chapter.

 Note that although we structure this section to first describe and explore the data
and then to figure out a use case to solve, typically the steps are taken in reverse order.
Usually an ML practitioner will start with a use case, hypothesis, or set of questions to
answer and then search for and explore data to appropriately solve the problem at
hand. This is the preferred methodology, because it forces the practitioner to think
hard about the use case and the data required before going “in the weeds” of the data-
set. That said, it’s not uncommon to be handed a dataset and be asked to build some-
thing cool!

8.1.1 A first glance at the dataset

Our dataset consists of written movie reviews from the Internet Movie Database, IMDb
(www.imdb.com). The training data consists of 50,000 reviews, selected so that each
movie has no more than 30 reviews in the dataset. For each review, the outcome vari-
able is encoded as a binary feature, with the value 1 if the manual IMDb rating for that
review is greater than 6, and the value 0 if the rating is less than 5. No reviews in the
intermediate ratings of 5–6 are included in the dataset.

 The challenge with this dataset is to devise an ML system to learn the patterns and
structure of language that constitute positive reviews versus those that constitute nega-
tive reviews. Critically, you’ll train your model to learn only from the text of the reviews

http://www.kaggle.com/c/word2vec-nlp-tutorial
http://www.imdb.com
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and not from other contextual data such as the movie actors, director, genre, or year
of release. Presumably, that data would help the accuracy of your model predictions,
but it isn’t available in this dataset.

 In addition to a training dataset, a separate testing dataset of 25,000 reviews of
movies that don’t appear in the training dataset is provided. In principle, this set of data
could be used to validate the performance of your model and to estimate how well the
model will perform when deployed to a real-world production setting. But Kaggle
doesn’t supply the labels for the testing set. Therefore, you’ll construct your own test-
ing set by splitting Kaggle’s training set into 70% training and 30% testing. 

 Note the importance of ensuring that no movies in the training set appear in the
testing set.1 If, for instance, reviews from the same movies were included in both the
training and testing sets, then your model could learn which movie titles were good
and bad, instead of focusing on the language constituting positivity and negativity. But
in production you’ll be applying this ML model to new movies, with titles you’ve never
seen. This leakage of movies from the training to the testing set could lead you to
believe that your model is better than it is when predicting the sentiment of reviews of
new movies. For this reason, we recommend that holdout testing sets always be con-
structed with temporal cutoffs, so that the testing set consists of instances that are
newer than the training instances.

8.1.2 Inspecting the dataset

The individual reviews in this dataset vary in length, from a single sentence up to sev-
eral pages of text. Because the reviews are pulled from dozens of film critics, the
vocabulary can vary dramatically from review to review. The key is to build a machine-
learning model that can detect and exploit the differences between the positive and
negative reviews so that it can accurately predict the sentiment of new reviews.

 The first step of the ML process is to look at the data to see what’s there and to
begin thinking about the other steps of the ML process, such as model type and fea-
turization. To start the data review process, take a look at the 10 shortest reviews in fig-
ure 8.1. Look at the first row (id = 10962_3). This particular review demonstrates how
nuanced this problem can be: although the review clearly states that the “movie is ter-
rible,” it also says that there are “good effects.” Despite the use of the word good, any
person would clearly agree that this is a negative movie review. The challenge now is
to teach the ML model that even if positive words such as good are used, the use of the
phrase “movie is terrible” trumps all!

 Similarly, these 10 sample reviews include several examples of negative statements.
Phrases such as “never get tired” and “no wasted moments” clearly indicate positive

1 In our training set, we don’t have an indicator of which movie each review describes. Therefore, we make the
assumption that the training set is provided presorted by date, and we divide the set so that multiple reviews
of the same movie fall together in the training or testing set.
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qualities of movies, even if the component words are all negative in nature. This
demonstrates that to do well in predicting sentiment, you must combine information
across multiple (neighboring) words.

 Looking through a few of the other (longer) reviews, it’s apparent that these
reviews typically consist of verbose, descriptive, flowery language. The language is often
sarcastic, ironic, and witty. This makes it a great dataset to demonstrate the power of
ML to learn nuanced patterns from real data and to make accurate predictions under
uncertainty. 

8.1.3 So what’s the use case?

Often practitioners of (non-real-world) machine learning dive into a problem without
thinking hard about the practical use of their ML model. This is a mistake, because
the choice of use case can help determine how you structure the problem and solu-
tion, including the following:

■ How to encode the target variable (for example, binary versus multiclass versus
real value)

■ Which evaluation criterion to optimize
■ What kinds of learning algorithms to consider
■ Which data inputs you should and should not use

So before you get started with ML modeling, you first need to determine what real-
world use case you want to solve with this dataset. 

 For each of three possible use cases, you’ll consider the following:

■ Why would the use case be valuable?
■ What kind of training data would you need?
■ What would an appropriate ML modeling strategy be?

id

10962_3

2331_1

12077_1

266_3

4518_9

874_1

3247_10

7243_2

5327_1

2469_10

sentiment

0

0

0

0

1

0

1

0

0

1

review

This movie is terrible but it has some good effects.

I wouldn't rent this one even on dollar rental night.

Ming The Merciless does a little Bardwork and a movie most foul!

You'd better choose Paul Verhoeven's even if you have watched it.

Adrian Pasdar is excellent is this film. He makes a fascinating woman.

Long, boring, blasphemous. Never have I been so glad to see ending credits roll.

I don't know why I like this movie so well, but I never get tired of watching it.

no comment - stupid movie, acting average or worse... screenplay - no sense at all... SKIP IT!

A rating of \1\" does not begin to express how dull, depressing and relentlessly bad this movie is."

This is the definitive movie version of Hamlet. Branagh cuts nothing, but there are no wasted moments.

Figure 8.1 Ten example reviews in the training set, chosen from the shortest reviews. For each review, you’re 
provided only an ID, the binary sentiment, and the text of the review.
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■ What evaluation metric should you use for your predictions?
■ Is the data you have sufficient to solve this use case?

Based on the answers to those questions, you’ll choose a single use case, which you’ll
spend the remainder of the chapter solving.

USE CASE 1: RANKING NEW MOVIES

The first and most obvious use case for a movie review dataset is to automatically rank
all new movies based on the text of all their reviews:

■ Why would the use case be valuable?
This could be a powerful way to decide which movie to watch this weekend. Scor-
ing individual reviews is one thing, but obviously the more valuable use case is to
score each movie on the overall positivity of its reviews. Sites such as Rotten Toma-
toes get heavy traffic because of their ability to reliably rate each movie.

■ What kind of training data would you need?
The basic necessities would be the review text, an indication of the sentiment of
each review, and knowledge about which movie each review refers to. With
these three components, building a movie-ranking system would be feasible.

■ What would an appropriate ML modeling strategy be?
There are a couple of options: (a) You could treat each movie as an ML instance,
aggregate the individual reviews for each movie, and roll up the review senti-
ment into either an average score or a multiclass model. (b) You could con-
tinue to treat each review as an ML instance, score every new review on its
positivity, and then assign each new movie its average positivity score. We prefer
option (b), because aggregating all reviews for a single movie together could
result in some confusing patterns for ML—particularly if the individual reviews
are highly polarized!  Scoring the individual results and then averaging them
into a “metascore” is a more straightforward approach.

■ What evaluation metric should you use for your predictions?
Assume here that you have a binary outcome variable for each review and that
your ML algorithm assigns a score to each review on its likelihood of being a
positive review, which you aggregate into a single score per movie. What you
care about here is how closely your score matches the true average rating for
that movie (for example, percentage of positive reviews), which could lead you
to use a metric such as R2.

But you could imagine using a different evaluation metric that focuses more
weight at the top of the ranking list. In reality, you’re probably interested in a
movie ranking in order to pick a flick from the top of the list to see this Satur-
day. Therefore, you’d instead select a metric that focuses on your ability to get
the top of the ranking list right. In this case, you’d select a metric such as the
true-positive rate at a small false-positive rate (for example, 5% or 10%).
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■ Is the data you have sufficient to solve this use case?
Unfortunately, no. You have everything you need except knowledge of which
movie each review is describing!

USE CASE 2: RATING EACH REVIEW FROM 1 TO 10
A second possible use case is to auto-rate each review on a scale of 1 to 10 (the IMDb
scale) based on the set of user reviews about each movie:

■ Why would the use case be valuable?
Any new review could be automatically assigned a rating without any manual
reading or scoring. This would cut down on a lot of manual labor that’s
required to curate the IMDb website and movie ratings; or, if users are provid-
ing a score along with their rating, it could provide a more objective score
based on the text of the user’s review.

■ What kind of training data would you need?
Just the text of each review and a score, from 1 to 10, for each review.

■ What would an appropriate ML modeling strategy be?
Again, there are two options: (a) Treat the outcome variable as a real-valued
number and fit a regression model. (b) Treat the outcome variable as categori-
cal and fit a multiclass classification model. In this case, we much prefer option
(a) because, unlike classification, it considers the scores on a numerical scale.

■ What evaluation metric should you use for your predictions?
If you choose to run a regression model, the typical regression evaluation met-
rics such as R2 or mean squared error are natural choices.

■ Is the data you have sufficient to solve this use case?
Again, it’s not. You have only a Boolean version of each review (positive versus
negative) and not the finely grained numerical score.

USE CASE 3: SEPARATING THE POSITIVE FROM THE NEGATIVE REVIEWS

The final use case to consider is separating all the positive reviews from the rest:

■ Why would the use case be valuable?
This use case would represent a less granular version of use case 2, whereby
each new review could be automatically classified as positive or negative
(instead of scored from 1 to 10). This classification could be useful for IMDb to
detect the positive reviews, which it could then promote to its front page or
(better yet) sell to movie producers to use as quotes on their movie posters.

■ What kind of training data would you need?
Only the review text and the binary positive versus negative indicator.

■ What would an appropriate ML modeling strategy be?
You’d fit a binary classification model. From there, you could assign a predic-
tion score for each new review on the likelihood that it’s a positive review.
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■ What evaluation metric should you use for your predictions?
It depends on how you want to use your predictions. If the use case is to auto-
matically pull out the 10 most positive reviews of the week (for example, to use
on the IMDb front page), then a good evaluation metric would be the true-
positive rate at a very small false-positive rate (for example, 1%). But if the goal
is to try to find all positive reviews while ignoring the negative reviews (for
example, for complete automated sentiment tagging of every review), then a
metric such as accuracy or area under the curve (AUC) would be appropriate.

■ Is the data you have sufficient to solve this use case?
Finally, yes! You have a training set of the movie review text and the binary sen-
timent variable. In the remainder of the chapter, you’ll build out a machine-
learning solution for this use case.

To recap, you first learned the basic details about the dataset: hand-written movie
ratings from IMDb. Then, you dove a little deeper to explore some of the patterns
and trends in the data. Finally, you considered possible ML use cases. For each use
case, you explored the value of a machine-learning solution to the problem, the
basic data requirements to build out an ML solution, and how to go about putting
together a solution.

 Next, you’ll build out an ML solution to separate positive from negative movie
reviews.

8.2 Extracting basic NLP features and building 
the initial model
Because the movie review dataset consists of only the review text, you need to use text
and natural-language features to build a meaningful dataset for your sentiment
model. In the previous chapter, we introduced various methods for extracting features
from text, and we use this chapter to discuss various practical aspects of working with
ML and free-form text. The steps you’ll go through in this section are as follows:

1 Extracting features from movie reviews with the bag-of-words method
2 Building an initial model using the naïve Bayes ML algorithm
3 Improving your bag-of-words features with the tf-idf algorithm
4 Optimizing model parameters

8.2.1 Bag-of-words features

As you may recall from our discussion of NLP features in the previous chapter, we
started out with a simple technique to featurize natural-language data: bag of words.
This method analyzes the entire corpus of text, builds a dictionary of all words, and
translates every instance in the dataset into a list of numbers, counting how many
times each word appears in the document. To refresh your memory, let’s revisit bag of
words in figure 8.2.
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Gene
fea

fo
testin
In listing 8.1, you load the dataset, create a 70%–30% train-test split, and use a simple
word-count method for extracting features. An important point to realize in this pro-
cess is that you can’t contaminate the bag-of-words dictionary with words from the test
set. This is why you split the dataset into training and testing subsets before you build
the vectorizer dictionary—to get a realistic estimate of the accuracy of the model on
previously unseen data.

import pandas
d = pandas.read_csv("movie_reviews/labeledTrainData.tsv", delimiter="\t") 

split = 0.7
d_train = d[:int(split*len(d))]
d_test = d[int((1-split)*len(d)):]

from sklearn.feature_extraction.text import CountVectorizer  
vectorizer = CountVectorizer()

features = vectorizer.fit_transform(d_train.review) 
test_features = vectorizer.transform(d_test.review) 
i = 45000
j = 10
words = vectorizer.get_feature_names()[i:i+10]
pandas.DataFrame(features[j:j+7,i:i+10].todense(), columns=words)

Take a look at a subset of the features generated in figure 8.3.

Listing 8.1 Building word-count features from the movie review dataset

Defined
vocabulary

Vectorization

foxbrownquick lazy dogoverjumpsthe

111 1 1112

110 1 1112

1088 6 66465

Text 1

Text 2

Wikipedia page
about “quick brown
fox” pangram.

Figure 8.2 The bag-of-words vectorization algorithm. From a dictionary of words, you can transform any 
new document (for example, Text 1, Text 2 in the figure) into a list of numbers that counts how many 
times each word appears in the document.

Loads the data

Splits the data into 
training and testing 
subsets

Initializes the word-
count vectorizer

Fits the dictionary 
and generates 
training set features

rates
tures
r the
g set



180 CHAPTER 8 Advanced NLP example: movie review sentiment
From figure 8.3, it’s clear that the dataset consists of mostly zeros with only a few
exceptions. We call such a dataset sparse, a common attribute of NLP datasets. This has
consequences when you want to use the dataset for features in an ML model, some-
thing we discuss in the next section before building an actual model to predict the
sentiment of reviews.

8.2.2 Building the model with the naïve Bayes algorithm

Now that you have a proper featurized dataset, you can use the features to build the
model as usual. For highly sparse datasets like this, some ML algorithms work much
better than others. Specifically, some algorithms have built-in support for sparse data,
and those algorithms are generally much more efficient, at least in memory usage but
often also in CPU usage and time to build. If you inspect the generated feature set
from listing 8.1, you’ll find that only 0.2% of the cells in the dataset have nonzero ele-
ments. Using the dense representation of the dataset would significantly increase the
size of the data in memory. 

The basics of the naïve Bayes classifier
The naïve Bayes (NB) classifier algorithm is a simple ML algorithm that was created
for use in text classification, an area of ML where it can still be competitive with more-
advanced general-purpose algorithms. The name stems from the fact that the Bayes
formula is applied to the data with very “naïve” assumptions about independence.
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Figure 8.3 A small 7 × 10 subset view of the word-count features that you’ll use for building the model. The full 
dataset is a sparse matrix of size 17,500 × 65,005 (17,500 documents in the training set by 65,005 unique words 
in the training set). A sparse matrix is useful when most of the values are 0, which is the case in most bag-of-words–
based features; in the full dictionary of words, individual words are unlikely to appear in a particular document.



181Extracting basic NLP features and building the initial model
This assumption is what usually makes the algorithm less useful for general (dense)
problems, because the features are rarely anywhere near independent. For sparse-
text features, this assumption still isn’t true, but it’s true enough for the algorithm to
work surprisingly well in practice. The NB classifier is one of the few ML algorithms
that’s simple enough to derive in a few lines, and we explain some of the highlights
in this sidebar.

In this chapter, our goal is to classify a review by finding the probability p(Ckx) of the
review sentiment being “bad” (k = 0) or “good” (k = 1) based on the features x of the
instance. In probability theory using the Bayes formula, this can be written like so:

p(Ckx) ~ p(Ck)p(xCk)

p(xCk) is known as the joint probability of the features x if the instance was of class
Ck. Because of the independence assumption (the naïve part), there’s no cross-feature
probability, and this becomes simply the product of the probability of each of the fea-
tures given the class:

p(Ckx) ~ p(Ck)p(x1Ck)p(x2Ck)p(x3Ck)p(x4Ck)...

Because p(Ck) is the marginal class distribution—the overall breakdown of good and
bad sentiment reviews—which you can easily find from the data, you only need to fig-
ure out what p(x

i
Ck) is. You can read this expression as “the probability of a specific

feature for a specific class.” For example, you’d expect the probability of having the
word great in a good-sentiment review being higher than in a bad-sentiment review. 

You can imagine learning this from the data by counting the feature (word) presence
across all documents in each class. The probability distribution that generates such
counts is called the multinomial distribution, and p(x

i
Ck) becomes

You use this in the previous equation and move to log space for convenience:

Here b is log[p(Ck)] (known from the data), x represents the features of the instance
you want to predict, and wk is log(pki

)—the fraction of times a word appears in a good
or bad document, which you’ll learn at model build time. Please note that we’ve left
out various constants throughout this calculation, and there are multiple implemen-
tation details to consider when coding this algorithm from scratch, but the basics out-
lined here remain true.
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One of the algorithms that works well for classification with sparse natural language
processing (NLP) features is the naïve Bayes algorithm, specifically the multinomial
(see the sidebar). In the following listing, you build the model on the features from
listing 8.1.

from sklearn.naive_bayes import MultinomialNB

model1 = MultinomialNB()
model1.fit(features, d_train.sentiment)
pred1 = model1.predict_proba(test_features)

To evaluate the performance of the model, you define a function in listing 8.3 and call
it on the initial model predictions. The accuracy metrics that you’ll report in this
chapter are the general classification accuracy (fraction of correctly classified docu-
ments), the receiver operating characteristic (ROC) curve, and the corresponding
area under the curve (AUC) number. These were all introduced in chapter 4 and
used in many of our examples.

from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve

def performance(y_true, pred, color="g", ann=True):
  acc = accuracy_score(y_true, pred[:,1] > 0.5)
  auc = roc_auc_score(y_true, pred[:,1])
  fpr, tpr, thr = roc_curve(y_true, pred[:,1])
  plot(fpr, tpr, color, linewidth="3")
  xlabel("False positive rate")
  ylabel("True positive rate")
  if ann:
    annotate("Acc: %0.2f" % acc, (0.2,0.7), size=14)
    annotate("AUC: %0.2f" % auc, (0.2,0.6), size=14)

performance(d_test.sentiment, pred1)

The result of running this code is shown in figure 8.4.
 Looking at figure 8.4, you can see that the performance of your bare-bones model

isn’t bad at all. You classify 88% of the reviews correctly, but you can dial the number
of false positives versus true positives up or down, depending on your preference for
more noise or better detection rate.

 Let’s try this with a few new example reviews by passing some text through the vec-
torizer and model for sentiment predictions:

>>> review = "I love this movie"
>>> print model1.predict(vectorizer.transform([review]))[0]
1

Listing 8.2 Building the first review sentiment model using multinomial naïve Bayes

Listing 8.3 Evaluating the initial model
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A positive sentiment is indicated by 1, so this sounds about right. Let’s try another one:

>>> review = "This movie is bad"
>>> print model1.predict(vectorizer.transform([review]))[0]
0

A negative sentiment is indicated by 0, so again this is indeed correct. Okay, let’s try to
trick the model:

>>> review = "I was going to say something awesome, but I simply can't 
because the movie is so bad."

>>> print model1.predict(vectorizer.transform([review]))[0]
0
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Figure 8.4 ROC curve of the classification performance of the simple bag-of-
words model. The classification accuracy—the fraction of correctly classified 
reviews—as well as the AUC (area under the ROC curve) metrics are printed in 
the figure. The accuracy shows that you’d expect to correctly classify 88% of 
the reviews with this model, but by using the ROC curve, you can trade false-
positive rate (FPR) for true-positive rate (TPR), and vice versa. If there were 
many reviews that humans needed to look through based on this classification, 
you might want to fix the FPR at a low value, which would in turn lower the 
true-positive detection rate. 
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aïve 
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No luck, the prediction is still correct. Maybe if you introduce more positive words into
the negative review?

>>> review = "I was going to say something awesome or great or good, but I 
simply can't because the movie is so bad."

>>> print model1.predict(vectorizer.transform([review]))[0]
0

Nope, this is one clever model. The word bad must have a strong influence on the clas-
sification, so perhaps you can cheat the model by using that in a positive review:

>>> review = "It might have bad actors, but everything else is good."
>>> print model1.predict(vectorizer.transform([review]))[0]
0

Finally, you succeed in somewhat cheating the model. This little exercise is fun, but it
also shows the power of the model in understanding arbitrary natural language in the
movie review domain. In the next section, you’ll try to improve the initial model by
going a bit further than our simple word-count features and by finding better values
for the parameters of the feature and modeling algorithms.

8.2.3 Normalizing bag-of-words features with the tf-idf algorithm

In the previous chapter, we introduced tf-idf as an upgrade to simple word-count fea-
tures. In essence, tf-idf normalizes the word counts based on the frequency of how
often each word appears across the documents. The main idea is that common words
get smaller weighting factors, and relatively rare words get larger weighting factors,
which enables you to dig deeper into the (often highly informative) words that appear
less often in the dataset.

 In this section, you’ll use tf-idf for your features to see whether you can gain extra
accuracy. The change is easy with scikit-learn, because you simply need to switch out
your CountVectorizer for a TfidfVectorizer. The code is shown in the next listing.

from sklearn.feature_extraction.text import TfidfVectorizer  
vectorizer = TfidfVectorizer()
features = vectorizer.fit_transform(d_train.review)

model2 = MultinomialNB()
model2.fit(features, d_train.sentiment)
pred2 = model2.predict_proba(vectorizer.transform(d_test.review))  

performance(d_test.sentiment, pred2) 

The performance of the tf-idf model is shown in figure 8.5. You can see how the tf-idf
features improved the model accuracy slightly. Specifically, the ROC curve shows that
it should be better at avoiding false positives. Imagine that you had numerous reviews

Listing 8.4 Using tf-idf features in your model

Uses the Tfidf 
vectorizer to 
build features

Trains a new n
Bayes model o
the features a
makes predict

Plots the 
results
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coming in but wanted to flag bad reviews for human inspection. A lower false-positive
rate would present fewer reviews to the reviewer that were actually positive, so they
could work through the queue faster.

 Both our tf-idf NLP feature-extraction algorithm and our naïve Bayes modeling
algorithm have knobs that can be turned to tune the algorithm for specific details in
the dataset. We call such knobs hyperparameters. This comes from the fact that the vari-
ables (features) of the model can be considered parameters as well, whereas these
algorithm parameters work at a higher level. Before you accept your model perfor-
mance, it’s important that you try different values for these parameters, and this is the
topic of the next section.

8.2.4 Optimizing model parameters

The simplest way to find the best parameters of a model is to try to build a bunch of
models with different parameters and look at the performance metric of interest.
The problem is that you can’t assume that the parameters are independent of each
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Figure 8.5 ROC curves for the tf-idf model on top of the previous bag-of-words 
model. You can see a slight improvement in both classification accuracy 
and AUC (area under the ROC curve). The tf-idf model curve specifically shows 
improvements in the low FPR range; the model would yield fewer false positives 
for the same number of correctly classified reviews. If humans were in the 
classification review loop, you’d have less noise to sift through.
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other—varying one parameter may affect the optimal value of another. This can be
solved in a brute-force way by building a model for any combination of parameters.
But if there are many parameters, this quickly becomes intractable, especially if it
takes a while to build the model just once. We discussed some solutions in chapter 4,
but you’ll probably be surprised by how often ML practitioners still rely on the brute-
force way. You’ll need to build up intuition about which parameters may be more
independent of each other and which have the largest effect on which types of data-
set. For this exercise, you have three parameters to optimize: two tf-idf parameters
(max_features, min_df) and one naïve Bayes parameter (nb_alpha). 

 The first thing you need is a function that you can call repeatedly to build a model
and return the parameters and the metric of interest (in this case, the AUC). The fol-
lowing listing defines this function.

def build_model(max_features=None, min_df=1, nb_alpha=1.0):
  vectorizer = TfidfVectorizer(max_features=max_features, min_df=min_df)
  features = vectorizer.fit_transform(d_train.review)
  model = MultinomialNB(alpha=nb_alpha)
  model.fit(features, d_train.sentiment)
  pred = model.predict_proba(vectorizer.transform(d_test.review))
  return {
    "max_features": max_features,
    "min_df": min_df,
    "nb_alpha": nb_alpha,
    "auc": roc_auc_score(d_test.sentiment, pred[:,1])
  }

With the repeatable model building function defined in listing 8.5, you can go ahead
and run your optimization pipeline by defining the possible values of your parameters
(chosen randomly or by intuition) and run the loop. This is done in the next listing.

from itertools import product

param_values = {
  "max_features": [10000, 30000, 50000, None],
  "min_df": [1,2,3],
  "nb_alpha": [0.01, 0.1, 1.0]
}

results = []
for p in product(*param_values.values()):
  res = build_model(**dict(zip(param_values.keys(), p)))  
  results.append( res )
  print res

Listing 8.5 Model building method useful for parameter optimization

Listing 8.6 Parameter optimization loop

Defines parameter 
values to try to 
optimize

For each parameter 
value combination

Builds the model 
and saves the result
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The parameters you optimize over are these:

■ max_features—The maximum number of word columns for the tf-idf algo-
rithm to create. From looking at the data, you know that all words amount to
about 65,000 columns, so you try out a number of a similar size in a range. None
specifies to use all words.

■ min_df—The minimum number of times a word must appear in the dataset to
be included in the features. This is an example of potential parameter depen-
dency, because the number of words in the dictionary (and hence max_features)
could be changed by changing min_df.

■ nb_alpha—The alpha (smoothing) parameter of the naïve Bayes classifier. This
is the only parameter that you can tune on this specific ML algorithm. The val-
ues to choose here require a bit more research into what the parameter means
and how others have been using it in other circumstances.

The last thing to mention about the code in listing 8.6 is the use of the product func-
tion from the itertools module—a collection of Python functions that makes it eas-
ier to work with data. This function is a clever way to generate all combinations of a set
of lists (Cartesian product). The results from running the code in listing 8.6 are
shown in figure 8.6.

 Figure 8.6 shows the output of some of the optimization runs. You had only three
parameters with 36 possible value combinations, so this didn’t take more than 10 min-
utes because the naïve Bayes training time is relatively low, but you could easily imag-
ine wanting to try many more values of many more parameters, and the optimization
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would take a long time. Another trick for finding the optimal parameters is to start
with a broad range of values and then dive more deeply into the optimal value range
with subsequent optimization runs over different parameter values. It’s clear from the
table how different parameters seem to improve the AUC of the model. Iteration 27
had the best results with these values:

■ max_features—None (all words, default)
■ min_df—1 (default)
■ nb_alpha—0.01

So, interestingly, you managed to improve on the model performance quite a bit by
finding a better value for the alpha parameter of the naïve Bayes algorithm. Let’s look
at the evolution of the AUC when varying each parameter (fixing the others at their
optimal values) in figure 8.7.
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Figure 8.7 The AUC improvements from varying three parameters of the feature and ML algorithms. You can see 
that (a) a higher max_features gives a better AUC, (b) a lower min_df gives a better AUC, and (c) a lower 
alpha gives a better AUC. This doesn’t mean that the best values for each of them individually necessarily yields 
the best combined. The best combined parameters from our optimization run are max_features=None (all 
words, default), min_df=1 (minimum, default), alpha=0.01 (main reason for improvement). The best AUC is 
0.974. All graphs shown can be reproduced using the code in the accompanying Python notebook.
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Each of these plots is only one perspective on the AUC evolution, because you’d need
a four-dimensional plot to plot the AUC as a function of all the parameters. But it’s
still interesting to see how the model responds to varying each value. For instance, the
higher the number of features, the better (the largest possible value won). The
smaller the number of min_df, the better (the smallest possible value won). And then,
the smaller the nb_alpha, the better. Because this has no theoretical lower limit, this
should prompt you to try even lower values in another run. We leave this as an exer-
cise for you (but, anecdotally, we weren’t able to find a much better value).

 The ROC curve of the optimized model is plotted with the previous models in fig-
ure 8.8. You can see a substantial improvement in model performance for both met-
rics and all points on the ROC curve. This is a great example of how it can pay off to
tune your model hyperparameters to gain extra prediction power. One last thing to
note here: you could, of course, imagine that new choices of model parameters could,
in turn, affect which feature and modeling algorithms (for example, word count ver-
sus tf-idf) would perform best, and each algorithm would potentially have a new set of
parameters to optimize. To be fully rigorous, you’d need to optimize across all choices
of algorithms and their parameters, but this is infeasible for most real-world problems,
and the trade-off here is to go through your optimization in milestones. For example,
first you fix the NLP algorithm to use and then the ML model, and then you optimize
those parameters. Your project could require a different set of milestones—again,
you’ll develop intuition about these things as you build successive ML models.
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Figure 8.8 The ROC curve of the optimized model versus the previous 
models. In our test set evaluation, this model seems to be universally better 
(at every point on the curve), and the expected accuracy increased 
considerably.
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The ROC curves in figure 8.8 conclude our initial modeling experiments. From basic
algorithms and very little code, you’ve managed to build a model with pretty good
accuracy on natural-language data alone. In the next section, you’ll go a step further
in your feature-engineering and modeling efforts and see various aspects of deploying
such a model into a real-world production-ready system.

8.3 Advanced algorithms and model deployment 
considerations
In the previous section, we were concerned with building a model using relatively sim-
ple features and ML algorithms. The accuracy of any of the models in that section may
have been good enough for our needs. You can try the next idea for optimizing the
model, but there’s always a trade-off between the time you spend and the potential
value brought by incremental improvements in model accuracy. We encourage you to
get a handle on the value of each percentage improvement, for example, in the form
of saved human-reviewer time, and how much you can afford to spend up front. As
you saw, our very first model was certainly capable of understanding review sentiment
in many cases and may well have been a good enough model to begin with. Often it’s
more valuable to put a slightly lower-accuracy model into production and get live
feedback from the system if possible.

 With that advice out of the way, let’s go against it and try to optimize this model a
bit further. Next, you’ll look into generating features from a new natural-language
modeling technique, originally developed by Google: word2vec. After you’ve extracted
the word2vec features, you’ll switch to the random forest algorithm to better support
the new features.

8.3.1 Word2vec features

A relatively new approach to natural language processing has been introduced by
Google in the form of the word2vec project. A word2vec model is itself an ML model
that’s built using deep neural networks, a branch of ML that has recently been pro-
ducing state-of-the-art results, especially on human-related domains such as natural
language, speech, and images.

 To build a word2vec model on your training set, you’ll use the Gensim NLP library
for Python, which has a nice word2vec implementation built in. You previously used
Gensim in chapter 7 to work with LDA, another topic model similar to word2vec. 

 In Gensim, you need to do a bit of extra work to prepare your documents for
modeling, because the Gensim algorithms work on sentences (lists of words already
split up) instead of arbitrary documents. This can be more work up front, but it also
gives you a better understanding of what goes into your model. In listing 8.7, you’ll
build a simple tokenization function that removes stop words and punctuation charac-
ters, and converts all words to lowercase. Note that this was all done automatically in
the scikit-learn word vectorizers; we could have used the same functionality or similar
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functions from the NLTK Python NLP toolkit, but we chose to write it out ourselves here
for educational purposes.

import re, string

stop_words = set(['all', "she'll", "don't", 'being', 'over', 'through', 
'yourselves', 'its', 'before', "he's", "when's", "we've", 'had', 'should',
"he'd", 'to', 'only', "there's", 'those', 'under', 'ours', 'has', 
"haven't", 'do', 'them', 'his', "they'll", 'very', "who's", "they'd", 
'cannot', "you've", 'they', 'not', 'during', 'yourself', 'him', 'nor', 
"we'll", 'did', "they've", 'this', 'she', 'each', "won't", 'where', 
"mustn't", "isn't", "i'll", "why's", 'because', "you'd", 'doing', 'some', 
'up', 'are', 'further', 'ourselves', 'out', 'what', 'for', 'while', 
"wasn't", 'does', "shouldn't", 'above', 'between', 'be', 'we', 'who', 
"you're", 'were', 'here', 'hers', "aren't", 'by', 'both', 'about', 'would', 
'of', 'could', 'against', "i'd", "weren't", "i'm", 'or', "can't", 'own', 
'into', 'whom', 'down', "hadn't", "couldn't", 'your', "doesn't", 'from', 
"how's", 'her', 'their', "it's", 'there', 'been', 'why', 'few', 'too', 
'themselves', 'was', 'until', 'more', 'himself', "where's", "i've", 'with', 
"didn't", "what's", 'but', 'herself', 'than', "here's", 'he', 'me', 
"they're", 'myself', 'these', "hasn't", 'below', 'ought', 'theirs', 'my', 
"wouldn't", "we'd", 'and', 'then', 'is', 'am', 'it', 'an', 'as', 'itself', 
'at', 'have', 'in', 'any', 'if', 'again', 'no', 'that', 'when', 'same', 
'how', 'other', 'which', 'you', "shan't", 'our', 'after', "let's", 'most', 
'such', 'on', "he'll", 'a', 'off', 'i', "she'd", 'yours', "you'll", 'so', 
"we're", "she's", 'the', "that's", 'having', 'once'])

def tokenize(docs):
  pattern = re.compile('[\W_]+', re.UNICODE)
  sentences = []
  for d in docs:
    sentence = d.lower().split(" ")
    sentence = [pattern.sub('', w) for w in sentence]
    sentences.append( [w for w in sentence if w not in stop_words] )  
  return sentences

From this function, you can tokenize any list of documents, and you can now proceed
to build your first word2vec model. For more information on the parameters of the
algorithm, please see the Gensim documentation.2

Listing 8.7 Document tokenization

2 https://radimrehurek.com/gensim/models/word2vec.html

Splits the document into 
words after converting all 
characters to lowercase

Removes every nonword
character, such as punctuationRemoves English 

stop words

https://radimrehurek.com/gensim/models/word2vec.html
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from gensim.models.word2vec import Word2Vec

sentences = tokenize(d_train.review)
model = Word2Vec(sentences, size=300, window=10, min_count=1,
   sample=1e-3, workers=2)
model.init_sims(replace=True)
print model['movie']
#> array([ 0.00794919, 0.01277687, -0.04736909, -0.02222243, …])

You can see how a single word is represented as a vector (of 300 numbers, in this
case). In order to use the word2vec model to generate features for your ML algo-
rithm, you need to convert your reviews into feature vectors. You know how to repre-
sent single words as vectors, so a simple idea is to represent a review document (list of
words) as the average vector of all the words in the document. In the next listing,
you’ll build a function to do exactly this.

def featurize_w2v(model, sentences):
  f = zeros((len(sentences), model.vector_size))    
  for i,s in enumerate(sentences):
    for w in s:

try:
vec = model[w]

except KeyError:
continue

f[i,:] = f[i,:] + vec
    f[i,:] = f[i,:] / len(s)
  return f

You’re now ready to build a model on your newly generated word2vec features. As you
may recall from our ML algorithm discussions in section 8.2.2, the naïve Bayes classi-
fier works well with sparse data but not so well with dense data. The word2vec features
have indeed converted your documents from the ~65,000 sparse word-count fea-
tures into only hundreds of dense features. The deep-learning model has learned
higher-level topics of the model (listing 8.8), and each document can be represented
as a combination of topics (listing 8.9).

8.3.2 Random forest model

The multinomial naïve Bayes algorithm introduced in the previous section is incom-
patible with the new word2vec features, because they can’t be considered generated by a
multinomial distribution. You could use other distributions to continue to work with
the naïve Bayes algorithm, but you’ll instead rely on an old friend of ours: the random

Listing 8.8 Word2vec model

Listing 8.9 Word2vec featurization

Generates sentences 
from tokenize function

Builds and 
normalizes 
word2vec model

Prints the vector from word2vec
model for the word movie

Initializes a NumPy array 
for the feature vectors

Loops over each sentence, 
add the vectors for each 
word, and takes the mean
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forest algorithm. In the following listing, you’ll build a 100-tree random forest model on
the word2vec features and analyze the performance as usual on the test set.

features_w2v = featurize_w2v(model, sentences)

model4 = RandomForestClassifier(n_estimators=100, n_jobs=-1)
model4.fit(features_w2v, d_train.sentiment)

test_sentences = tokenize(d_test.review)
test_features_w2v = featurize_w2v(model, test_sentences)
pred4 = model4.predict_proba(test_features_w2v)
performance(d_test.sentiment, pred4, color="c")

The performance of the word2vec random forest model is compared to your previous
models in figure 8.9. You can see how your new model indeed improves the model
accuracy in your chosen evaluation metric and across all points on the ROC curve.

With your final model illustrated in figure 8.9, you’re satisfied with the performance
and will stop optimization work for now. You could try many more things to improve
the accuracy even further. Most likely, not even humans would be capable of correctly
classifying the sentiment of all the reviews; there may be some incorrect labels or some
reviews for which the sentiment isn’t easily understandable.

Listing 8.10 Building a random forest model on the word2vec features
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Figure 8.9 The ROC curve of the word2vec model along with previous 
models. You can see an improvement for all values of the ROC curve, also 
reflected in the increased accuracy and AUC numbers.
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 But the model can likely get much better than what you’ve achieved so far. We’ll
leave you, dear reader, with an initial list of things that we would try out, in rough
order of priority:

■ Use unlabeled data to build a better topic model.
The data section of the Kaggle competition website contains an unlabeled set of
reviews that you can use for training. Because you’re building a supervised
model, they don’t seem useful at first. But because you’re building a word2vec
model that needs to learn the nuances of the world of IMDb movie reviews—
and especially the connections between different words and concepts—it would
be beneficial to use this data in order to improve your word2vec model that
goes into the features of your training set (the one that has labels) before you
build the model.

■ Optimize parameters.
You saw great improvement in model performance in the initial models of this
chapter after finding better values for the hyperparameters of the model. We
since introduced a new NLP model (word2vec) and ML algorithm (random for-
est), so there are many new parameters to optimize.

■ Detect phrases.
The Gensim library includes support for detecting phrases in text, such as “New
York City,” which would be missed in our “dump” word-only tokenization func-
tion. The English language tends to include multiword concepts, so this could
be an interesting thing to include in your sentence-generation function.

■ Handle multiple languages.
If you were uncertain about all the reviews being in a single language (in this
case, English), you’d have to deal with multiple languages in various places of
the modeling pipeline. First, you’d need to know which language the review was
in, or you’d need to detect the language (for which there are several libraries of
varying quality available). Then you’d need to use this information in your
tokenization process to use different stop words and, potentially, punctuation
characters. If you were really unlucky, you’d even have to deal with totally differ-
ent sentence structures, such as Chinese text, where you can’t just split the
words when there’s a whitespace.

Now, imagine you’re satisfied with the model at hand. If this were a real-world use
case, you’d want to put the model into production. You should then consider some of
the following aspects, depending on the exact use case:

■ How much training data do you have, and does the model get better with more training data?
This can affect the choice of ML algorithm because you need to pick a model
that scales well with more training data. For example, the naïve Bayes classifier
supports partial training, also known as online learning, whereas the random
forest algorithm can be difficult to scale to larger datasets.
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■ What is the volume of predictions, and do they need to be delivered in real time?
We’ll talk a great deal more about scaling up predictions with volume and
speed in the next chapter, but the takeaway is that this can have consequences
for the choice of algorithm and the infrastructure in which it’s deployed.

8.4 Summary
In this chapter, you learned how to go end to end on a real machine-learning use case,
along with the basics of natural language processing and optimizing model parame-
ters. Key takeaways for this chapter included the following: 

■ It’s essential to focus on the right problem. You should always start by asking,
for each possible use case, “What’s the value of solving this problem?”

■ For each use case, you need to inspect the data and systematically determine
whether the data is sufficient to solve the problem at hand.

■ Start with simple off-the-shelf algorithms to build an initial model whenever possi-
ble. In our example, we predicted review sentiment with almost 90% accuracy.

■ Accuracy can be improved by testing and evaluating alternative models and
combinations of model parameters.

■ There are often trade-offs between different model parameters and evaluation
criteria. We looked at how the trade-off between false positive and false negative
rates for movie reviews is represented by the model’s ROC curve.

■ State-of-the-art natural-language and ML modeling techniques like word2vec
are examples of how advanced feature engineering may enable you to improve
your models.

■ Your choice of algorithms may depend on factors other than model accuracy,
such as training time and the need to incorporate new data or perform predic-
tions in near-real time.

■ In the real world, models can always be improved.

8.5 Terms from this chapter

Word Definition

word2vec An NLP modeling framework, initially released by Google and used in many 
state-of-the-art machine-learning systems involving natural language

hyperparameter 
optimization

Various techniques for choosing parameters that control ML algorithms’ 
execution to maximize their performance



Scaling machine-learning
workflows
In real-world machine-learning applications, scalability is often a primary concern.
Many ML-based systems are required to quickly crunch new data and produce pre-
dictions, because the predictions become useless after a few milliseconds (for
instance, think of real-time applications such as the stock market or clickstream
data). On the other hand, other machine-learning applications need to be able to
scale during model training, to learn on gigabytes or terabytes of data (think about
learning a model from an internet-scale image corpus).

This chapter covers
■ Determining when to scale up workflows for

model accuracy and prediction throughput
■ Avoiding unnecessary investments in complex

scaling strategies and heavy infrastructure
■ Ways to scale linear ML algorithms to large

amounts of training data
■ Approaches to scaling nonlinear ML

algorithms—usually a much greater challenge
■ Decreasing latency and increasing throughput

of predictions
196
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 In previous chapters, you worked mostly with data that’s small enough to fit, pro-
cess, and model on a single machine. For many real-world problems, this may be suffi-
cient to solve the problem at hand, but plenty of applications require scaling to
multiple machines and sometimes hundreds of machines in the cloud. This chapter is
about deciding on a scaling strategy and learning about the technologies involved.

 In the first part of this chapter, we introduce the various dimensions to consider
when facing a large dataset or a requirement for high-volume predictions. We present
ways that you can avoid investing a lot of time and resources in a fully scalable
approach, and some technologies to consider if there’s no way around it. The follow-
ing section goes more deeply into the process of scaling up the ML workflow for train-
ing models on large datasets. Finally, we focus on scaling the prediction workflow to
large volumes or decreased latency. 

 In the next chapter, you’ll get to use everything you’ve learned in order to solve a
real-world big-data example, so hang on as you get through the basics in this chapter.

9.1 Before scaling up
The type of scalability required for any given problem ultimately depends on the use
case and the computational constraints that exist. This section starts by describing the
kinds of scalability that are commonly required in modern machine-learning applica-
tions. You’ll step through the various dimensions to consider and identify which could
be bottlenecks in your ML code. Later, after you’ve identified the types of scalability
required, you’ll learn about standard techniques to ensure that your ML applications
can handle real-world data rates and volumes. 

 Instead of diving right into specific methods to scale ML applications, we start with
a high-level overview. Using our ML workflow as a guide, let’s begin with a systems
view of ML scalability.

9.1.1 Identifying important dimensions

Let’s first deconstruct our machine-learning workflow into the two primary routines:
model training and model prediction. For these two systems, how could resource con-
straints affect the workflow, and how could these inhibit or break the system? Con-
sider table 9.1.

Table 9.1 Problems in model building that can occur due to lack of scalability, plus their ultimate
consequences

Scalability problem Consequence

Training dataset is too large to fit a model. No model is fitted, so no predictions can be made.

Training dataset is so large that model fitting 
is slow.

Model optimization is infeasible (or impractical), so a 
suboptimal model is used, sacrificing accuracy.
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During model building, the scalability issues that you’ll face stem from large training
sets. At one extreme, if your training dataset is so large that you can’t even fit a model
(for example, the data doesn’t fit in memory), then this is a problem that you must
find a way around. You can choose from three approaches: (1) find a smaller subset of
the data that you can learn on, (2) use a machine with more RAM, or (3) use a more
memory-efficient learning algorithm.

 In a bit, we describe a few quick ways to reduce your dataset size without signifi-
cantly impacting model quality. We follow this up with a discussion of how to scale
compute cycles to fit your problem via scalable data systems. Later in the chapter, we
introduce scalable learning algorithms, which can allow you to scale ML to your data
without relying on shortcuts or extra hardware.

 For slightly smaller datasets, it may be possible to fit only relatively simple models
(such as linear/logistic regression) in lieu of more-sophisticated ones (such as boost-
ing), because of the extra computational complexity and memory footprint of the
latter. In this case, you may be sacrificing accuracy by not fitting more-sophisticated
learning algorithms, but at least you’re able to fit a model. In this case, the same
options presented previously are viable approaches to try.

 In a related scenario, the massive size of your training dataset could cause model
fitting, and in turn model optimization, to be slow. Like the previous scenario, this can
cause you to use a less accurate model, because you’re forced to employ a coarse
tuning-parameter-optimization strategy or to forego tuning altogether. But unlike the
preceding situation, this predicament can be solved by spinning up more nodes (hor-
izontal scaling) and fitting models (with different tuning parameter choices) on the
different machines. We touch more on horizontal scaling in section 9.1.3.

 In the prediction workflow, the scalability issues you face stem from data that
comes in very fast, prediction or feature-engineering processes that are CPU-intensive,
or prediction data batches that are very large. Consider table 9.2.

Luckily, all three of these challenges can be resolved with the same strategy: spinning
up more machines. The advantage of prediction, as opposed to model training, is that
in the vast majority of use cases, predictions can be made independently for each data

Table 9.2 Problems in ML prediction that can occur due to lack of scalability, plus their ultimate
consequences

Scalability problem Consequence

Data rates (streaming) are too fast for the ML system 
to keep up.

The backlog of data to predict on grows and 
grows until ultimately breaking.

Feature-engineering code and/or prediction pro-
cesses are too slow to generate timely predictions.

The potential value of the predictions is lost, 
particularly in real-time use cases.

Data sizes (batch) are too large to process with 
the model.

The prediction system breaks, and no predic-
tions are made.
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instance.1 To generate predictions, at any one time you need to hold in memory only
the features for a single instance (and the ML model that you’ve built). Contrast that
scenario to model training: typically, the entire training set needs to be loaded into
memory. Thus, unlike the scalability problems during model training, prediction scal-
ability issues don’t require larger machines; they just require more of them—and, of
course, an efficient data management system to control them (more on this later).

 Whether you need to generate predictions more quickly, handle a higher volume
of instances, or deal with slow feature-engineering or prediction processes, the solu-
tion is to spin up more machines and send out different subsets of instances on each
node for processing. Then, assuming that the fitted model is distributed on all the
nodes, you can generate predictions in parallel across all machines and return them
to a central database. 

 In section 9.3, you’ll dive deeply into prediction systems. There, you’ll explore a few
approaches to building computational systems for fast and scalable ML prediction.

9.1.2 Subsampling training data in lieu of scaling?

In some cases, model training may be infeasible with the entire training set and the
available CPU resources. If you’re up against this challenge and no other option is via-
ble, then as a method of last resort, you may consider subsampling the training data
before model building.

 Although in general we discourage subsampling data (you might lose important sig-
nals), some ways of discarding data are better than others. Some might even improve
your model, depending on the ML algorithm at hand. You can throw away data in two
ways: discard features or discard instances. For each option, we’ll describe a statisti-
cally rigorous method to reduce the size of your training data.

FEATURE SELECTION

Often, the broadness of a dataset creates the computational bottleneck. For example,
in genome data, a training set may contain data for millions of genes (features) but
for only hundreds of patients (instances). Likewise, for text analysis, the featurization
of data into n-grams can result in training sets containing upward of millions of fea-
tures. In these cases, you can make your model training scale by first eliminating
unimportant features in a process called feature selection. Figure 9.1 shows a schematic
of how feature selection works.

 As we discussed in chapters 4 and 5, feature selection can lead to better models in
some cases. By intelligently removing features, you can make the learning algorithms
hone in on the important signals without becoming distracted by the features that
don’t matter. The actual loss or gain of feature selection depends on the choice of ML
model and on how much information is unknowingly lost because you’re throwing

1 Note that in a handful of ML use cases, predictions can’t be made on separate instances independently. For
example, a time-series forecasting model, such as a financial or climate model, may rely on the predictions
from multiple timestamps in generating a single forecast. 
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away data, so you should always test your changes by validating your model appropri-
ately. In this section, we talk about feature selection primarily as a way of working with
large datasets.

 For massive training sets, our recommended method of feature selection is Lasso.
Lasso is an efficient linear learning algorithm that automatically searches for the most
predictive subset of features. Computing the entire trace of the algorithm is efficient,
allowing the user insight into the entire ordering of all the features in terms of their
predictive power in the linear model. Moreover, the best subset of features, in terms of
the linear model predictions, is provided.

 If you’re (un)lucky enough to have such a large dataset that you can’t even fit a
Lasso model, you may consider fitting the Lasso to subsets of the instances in your
training set (and potentially averaging across runs of the algorithm). This can give you
a good sense of which features can be removed from the model without degrading the
statistical performance of your ML algorithm.

 The obvious downside to Lasso feature selection is that it uses a linear model to
gauge the importance of each feature. A feature that’s selected out via Lasso could
indeed have a nonlinear relationship with the target variable that may not be appro-
priately captured by Lasso. As an alternative, nonparametric approaches to feature
selection exist, such as random forest feature importance, but those methods typically
don’t scale to large datasets.

INSTANCE CLUSTERING

If after feature selection your training data is still too large to fit a model on, you may
consider subselecting instances. As an absolute method of last resort, you can use sta-
tistical clustering algorithms to identify and remove redundancies in your training
instances.

 For this type of data reduction, we recommend using an agglomerative hierarchi-
cal clustering algorithm. This approach will initialize with each training set instance as
the sole member of its own cluster. Then, the two closest clusters are subsequently
joined (using a predefined distance measure to determine “closeness”). This joining

Original training
data: 50 features

f1 f50

Lasso selects
f1, f3, f6…f15 … …

f2 f1 f3f3

New dataset
used for training

f15

Figure 9.1 Feature selection using 
Lasso to reduce the dimensionality 
of a large dataset to train a machine-
learning model
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of nearby clusters continues until a stopping criterion (for example, number of clus-
ters) is reached. We recommend stopping this process as early as possible so you don’t
reduce too dramatically the information content of your data. The final reduced
training set consists of a single instance for each of the resulting clusters.

9.1.3 Scalable data management systems

Independent of the strategy you want to take for scaling up your ML workflow, you
need to be able to handle the data first. In the past decade, we’ve seen tremendous
focus on so-called big-data technologies. In this book, we use the term big data to mean
any data that’s too large to be processed by a single machine in a reasonable amount
of time. Here, we introduce some of the most successful big-data projects and how
they can be used in an ML framework.

 The basic principle in modern big-data systems is that you need to be able to han-
dle more data by adding more machines. This is known as horizontal scalability. In con-
trast, the alternative way of handling larger resource requirements is vertical scaling,
whereby you upgrade the small number of machines you have with more disk, mem-
ory, or CPU cores. Figure 9.2 compares horizontal and vertical scalability.

Sometimes, and perhaps more often than you might think, upgrading your machines
will be enough to scale up your machine-learning workflow. As stated in the previous
sections, after the raw data has been processed and readied for your classification or
regression problem, the data may not be big enough to warrant the complexity of a
true big-data system. But in some cases, when dealing with data from popular websites,
mobile apps, games, or a large number of physical sensors, it’s necessary to use a hori-
zontally scalable system. From now on, this is what we’ll assume.

Horizontal scalability Vertical scalability

New
nodes
added

Data distributed
evenly among nodes

More
memory
added

Figure 9.2 Horizontal vs. vertical scalability for big-data systems. In horizontal systems, you add 
new nodes (machines) to your infrastructure to handle more data or computation, as the load is 
distributed relatively evenly among nodes. An example of such a system is Apache Hadoop. In 
vertically scaling systems, you add more resources to your existing machines in order to handle 
higher loads. This approach is usually more efficient initially, but there’s a limit to the amount of 
resources you can add. Examples of databases that work well with this approach are SQL servers 
such as PostgreSQL.
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 Horizontally scalable big-data systems have two main layers: storage and computa-
tion. In the storage layer, data is stored and passed on to the computational layer, where
data is processed. One of the most popular big-data software projects is Apache
Hadoop, which is still widely used in science and industry and is based on ideas from a
previously unseen level of scalability obtained at Google and other web-scale compa-
nies in the early 2000s. 

 The storage layer in Hadoop is called the Hadoop Distributed File System (HDFS).
Datasets are partitioned and distributed over multiple machines so they can be pro-
cessed in parallel. Also, each partition is replicated so data is unlikely to be lost in the
event of  hardware or software failures.

 The computing layer of Hadoop uses a simple algorithm called MapReduce to dis-
tribute computation among the nodes in the cluster. In the MapReduce framework,
the map step distributes data from HDFS onto workers that transform the data in
some way, usually keeping the number of data rows the same. This is similar to our
feature-engineering processes in earlier chapters, where you add new columns to
each row of input data. In the reduce step, the mapped data is filtered and aggre-
gated into its final form. Many data-processing algorithms can be transformed into
MapReduce jobs. When algorithms are transformed to this framework, systems such
as Hadoop will take care of the distribution of work among any number of machines
in your cluster. 

 In principle, the storage and computational layers need not be integrated. Many
organizations use a storage system from a cloud provider, such as the S3 service in the
Amazon Web Services (AWS) cloud infrastructure, coupled with the Hadoop MapRe-
duce framework for computation. This has the benefit that AWS manages your large
volumes of data, but you lose one of the main points of the tight integration between
HDFS and MapReduce: data locality. With data locality, your system becomes more effi-
cient because computational tasks are performed on subsets of the data close to where
that data is stored.

 The Hadoop community has developed a machine-learning library called Mahout
that implements a range of popular ML algorithms that work with HDFS and Map-
Reduce in the Hadoop framework. If your data is in Hadoop, Mahout may be worth
looking into for your machine-learning needs. Mahout is moving away from the sim-
plistic MapReduce framework into more-advanced distributed computing approaches
based on Apache Spark. Apache Spark, a more recent and widely popular framework
based on the ideas of Hadoop, strives to achieve better performance by working on
data in memory. Spark has its own library of machine-learning algorithms in the MLlib
library included with the framework. Figure 9.3 shows a simple diagram of the Apache
Spark ecosystem.

 Scalable ML algorithms are often linear for natural reasons. Both Mahout and MLlib
include mostly linear ML algorithms or approximations to nonlinear algorithms. In the
next section, you’ll look at how to approach scaling with both types of algorithms.
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9.2 Scaling ML modeling pipelines
In the first section of this chapter, you looked at things that are good to know before
you take the plunge and invest in scaling up your workflow to handle larger datasets.
In this section, we assume that you’ve made the decision to scale out your ML work-
flow and chosen a big-data processing system to use. Figure 9.4 updates our familiar
ML workflow diagram to the world of big data.

Querying
data in Spark
with SQL

Real-time
stream
processing
in Spark

Machine-learning
algorithms and
tools in Spark

Graph-processing
framework for Spark

Spark
SQL

Apache Spark

Spark
Streaming

MLlib
(machine
learning)

GraphX
(graph)

Figure 9.3 The Apache Spark ecosystem based on the Spark core for 
distributed computation. Spark SQL allows you to work with tables using 
Python pandas or R data frames. Spark Streaming allows you to process 
data in real time as it arrives, in contrast to the batch-processing nature 
of Hadoop and classic Spark. MLlib is the machine-learning library that 
includes a range of ML algorithms optimized for the Spark engine, and 
GraphX is a library allowing efficient computation on large graphs such as 
the social graph of a social network.

Big training data

Scalable ML algorithms

Scalable feature engineering High-throughput prediction

Figure 9.4 The modeling part of our familiar ML workflow 
diagram with scalable components
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In section 9.1.3, we introduced a few big-data-capable systems that can be used to
manage and process data of almost any size. Because they work on an instance-by-
instance basis, the feature-engineering processes that we’ve talked about in the book
so far can be done with simple map calls that are available in any of those systems.
Next, you’ll look at how some popular linear and nonlinear ML algorithms scale in
the face of big data.

9.2.1 Scaling learning algorithms

In the beginning of the chapter, you saw that during the learning phase, the funda-
mental scalability challenge is dealing with the size, in memory, of very large training
sets. To circumvent that problem, one option is to look for implementations of ML
algorithms that either (a) use a smaller memory footprint than competing implemen-
tations of the same algorithm, or (b) can train over distributed systems in which each
node requires only a subset of the entire dataset.

 Out in the wild, countless implementations of the most common ML learning
algorithms exist. From scikit-learn to mlpack, these implementations are continually
stretching the frontiers of memory efficiency (and thus increasing the dataset size that
can be trained on a single computer with a fixed amount of RAM). Yet, data volumes
are still outpacing the gains in ML software and computer hardware. For some train-
ing sets, the only option is horizontally scalable machine learning.

 The most commonly used distributed learning algorithm is linear (and logistic)
regression. The Vowpal Wabbit (VW) library popularized this approach, and has been a
mainstay for scalable linear learning across multiple machines. The basic way that dis-
tributed linear regression works is to first send subsets of the training data (subset by
dataset rows) to the various machines in the cluster. Then, in an iterative manner,
each machine performs an optimization problem on the subset of data on hand, send-
ing back the result of the optimization to the central node. There, that information is
combined to come up with the best overall solution. After a small number of itera-
tions of this procedure, the final model is guaranteed to be close to the overall opti-
mal model (if a single model were fit to all the data at once). Hence, linear models
can be fit in a distributed way to terabytes or more of data!

 As we’ve discussed numerous times in this book, linear algorithms aren’t necessar-
ily adequate for modeling the nuances of data for accuracy predictions. In these cases,
it can be helpful to turn to nonlinear models. Nonlinear models usually require more
computational resources, and horizontal scalability isn’t always possible with nonlin-
ear models. This can be understood loosely by thinking of nonlinear models as also
considering complex interactions between features, thus requiring a larger portion of
the dataset at any given node. 

 In many cases, it’s more feasible to upgrade your hardware or find more-efficient
algorithms or more-efficient implementations of the algorithms you’ve chosen. But in
other situations, scaling a nonlinear model is needed, and in this section we discuss a
few ways to approach this. 
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POLYNOMIAL FEATURES

One of the most widely used tricks to model nonlinear feature interactions is to create
new features that are combinations of the existing features and then train a linear
model including the nonlinear features. A common way to combine features is to mul-
tiply features in various combinations, such as feature 1 times feature 2, feature 2 squared,
or feature 1 times feature 2 times feature 5. Say a dataset consists of two features, f1 = 4 and
f2 = 15. In addition to using f1 and f2 in your model, you can generate new features f1
× f2 = 60, f1 ^ 2 = 16 and f2 ^ 2 = 225. Datasets usually contain a lot more than two fea-
tures, so this technique can generate a huge number of new features. These features
are nonlinear combinations of existing features. We call them polynomial features. The
following listing shows how this can be achieved with the scikit-learn Python library.
The results of running the code in this listing show the accuracy gained when adding
polynomial features to a standard Iris flower classification model:

Accuracy (linear):     0.95 (+/- 0.12)
Accuracy (nonlinear):  0.98 (+/- 0.09)

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.cross_validation import cross_val_score

iris = datasets.load_iris()

linear_classifier = LogisticRegression()
linear_scores = cross_val_score(linear_classifier, \
    iris.data, iris.target, cv=10)   
print "Accuracy (linear):\t%0.2f (+/- %0.2f)" % \
    (linear_scores.mean(), linear_scores.std() * 2)

pol = PolynomialFeatures(degree=2)
nonlinear_data = pol.fit_transform(iris.data)

nonlinear_classifier = LogisticRegression()
nonlinear_scores = cross_val_score(nonlinear_classifier, \   
    nonlinear_data, iris.target, cv=10)   
print "Accuracy (nonlinear):\t%0.2f (+/- %0.2f)" % \
    (nonlinear_scores.mean(), nonlinear_scores.std() * 2)

An example of another machine-learning toolkit that has polynomial feature extrac-
tion integrated is the Vowpal Wabbit library. VW can be used to build models on
large datasets on single machines because all computation is done iteratively and
out of core, meaning that only the data used in the particular iteration needs to be
kept in memory. VW uses stochastic gradient descent and feature hashing to deal
with unstructured and sparse data in a scalable fashion. VW can generate nonlinear
models by supplying the –q and –cubic flags to generate quadratic or cubic features,

Listing 9.1 Making a linear model nonlinear by using polynomial features

Loads the sample data. 
Each instance describes 
pictures of Iris flowers 
that the model will learn 
to tell apart.

Builds and prints 
cross-validated results 
of linear model

Adds degree-2 polynomial 
interaction features to the dataset

Builds and prints 
cross-validated results
of linear model on 
nonlinear data
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corresponding to polynomial features where all pairs or all triplets of features have
been multiplied together.

DATA AND ALGORITHM APPROXIMATIONS

As you saw in the preceding section, the polynomial feature approach has the ability
to increase the accuracy of the model significantly, but also increases the number of
features polynomially. That might not be feasible for a large number of input features,
so here you’ll look at a few nonlinear algorithms that have well-known approximations
useful for scalable implementations. Other algorithms may have their own approxima-
tions for scalability, so we encourage you to investigate your favorite algorithm further.

 A widely used nonlinear learning algorithm is random forest, which you’ve already
read about in previous chapters. The random forest model consists of numerous deci-
sion trees, and on first sight it may look trivial to scale random forest to many
machines by building only a subset of the trees on each node. Be aware that if the data
subsamples available at each node aren’t sufficiently similar, the accuracy of the model
can suffer. But building more trees or splitting the data more intelligently could miti-
gate the loss in accuracy.

 Another approximation that can be used to scale random forests and other algo-
rithms is a histogram approximation: each column in the dataset is replaced with the his-
togram of that column, which usually decreases the number of values in the column
significantly. If the number of bins in the histogram is too small, a lot of nuance may
be lost and model performance suffers.

 Another algorithm that has natural approximations is k-nearest neighbors; special
approximate tree structures can be used to increase the scalability of the model. Sup-
port vector machines have seen multiple approximation methods to make the nonlin-
ear versions more scalable, including Budgeted Stochastic Gradient Descent (BSGD)
and Adaptive Multi-hyperplane Machines (AMM). 

DEEP NEURAL NETS

A recent revolution in neural network research has spawned a new field of deep learn-
ing that produces highly nonlinear models and has proven to be scalable to very large
datasets. In the early days of machine learning, neural networks (NNs) were researched
heavily and applied widely in science and industry. Later, with the advent of algo-
rithms that were easier to reason about mathematically, NNs were used less frequently.
Recently, NNs again started producing state-of-the-art results on large and diverse
datasets after going through a few important evolutionary steps and entering the
realm of deep learning.

 Deep learning refers to a family of algorithms that extends the traditional neural net-
work. Commonly, these models include many hidden layers in the neural network or
many single-layer networks combined. Figure 9.5 illustrates an example neural network.

 One of the disadvantages of deep neural nets are that even on GPU hardware, the
computational resources needed to build and optimize models can take a long time.
In practice, you may be able to get just as good performance with other algorithms,
such as random forests, using far less time and resources. This depends on the dataset
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and problem at hand, as always. Another disadvantage is that it can be difficult to
understand what’s going on under the hood of these neural net models. Some refer to
them as black-box models, because you have to trust the results of your statistical analysis
of the models without doing any introspection of their internals. This again depends
on the use case. If you’re working with images, for example, the neurons can take on
intuitive representations of various visual patterns that lead to specific predictions.

 Many deep-learning methods have shown to scale to large datasets, sometimes by
using modern graphic cards (GPUs) for performing certain computations. For a deep-
learning library in Python that supports GPUs, take a look at Theano (http://deeplearning
.net/software/theano/) or Keras (http://keras.io/), which is based on Theano).

9.3 Scaling predictions
Scaling ML isn’t only about scaling to larger datasets. Imagine you’re building an
email service, and you suddenly have millions of users. You built a nice spam-detection
model, and it even scales to large datasets, but now you need to make hundreds of mil-
lions of predictions per day. That’s more than 10 thousand per second! Figure 9.6
illustrates this common pattern. In this section, we discuss ways to scale the volume of
predictions and scale the velocity when predictions need to be used in real time.

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

Figure 9.5 A neural network of two hidden 
layers. Loosely modeled on the human brain, 
the neurons (circles in each layer) are 
connected with weights that are learned 
during model training. The output variables 
can be predicted by running the input variables 
through the weighted connections. In deep 
learning, this classical neural network 
concept is expanded to include more hidden 
layers of various shapes and various degrees 
of connectivity between layers.

Big training data

Scalable ML algorithms

Scalable feature engineering High-volume and/or high-velocity prediction

Figure 9.6 Scaling the prediction part of the ML workflow to high volumes or 
high-velocity predictions

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://keras.io/
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First, you’ll look at infrastructure architectures for scaling with the volume of predic-
tions so you can handle the large user base of your email client, for example. Next,
you’ll look at how to scale the velocity of predictions and guarantee an answer within a
given timeframe. This is important when your ML models are used in the real-time
feedback loop of, for example, humans on web or mobile devices. 

9.3.1 Scaling prediction volume

In order to handle many predictions, you can use patterns known from computational
architecture for scaling workers to support any number of requests. The traditional
approach is to have a queue of prediction jobs from which a number of worker nodes
pull predictions, load the model (if needed), make the prediction, and push back the
results in whatever way makes sense for the application. Figure 9.7 shows how this
architecture might look for scaling predictions by volume.

This approach requires that the model can be loaded on all worker nodes, of course,
and that there are enough workers (or an autoscaling solution in place) to handle the
number of predictions coming in. You can easily calculate the number of workers
needed if you know the mean prediction time for a worker and the velocity of requests
coming in:

n_workers = request_velocity * prediction_time

For example, if you have 10 prediction requests coming in per second, and your work-
ers take 2 seconds to finish, you need at least 20 workers to keep up. The optimal

Prediction
workers

Prediction
storage

Prediction queue
(buffer)

Client
(web/mobile)

Add more prediction
workers if too many
predictions are waiting
in the queue.

Workers store
predictions in
the database.

Figure 9.7 A possible infrastructure for a scalable prediction service. Prediction requests are sent 
from the consumer to a queue, which delegates the job to a prediction worker. The worker stores the 
prediction in a database and delivers it back to the client when done. If the queue is clogging up when 
more predictions are streaming in than the workers can handle, more workers can be spun up.
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autoscaling solution here is to be able to spawn new workers from the number of
requests waiting in the queue over a certain period of time.

9.3.2 Scaling prediction velocity

In some cases, you need your predictions to be returned within a certain time after
the request was made by a client. Prediction velocity can be important, for example,
when predictions are made in response to a user action. Users expect feedback in real
time, and waiting even a few seconds can be detrimental to the user experience. Imag-
ine a Google search that takes 20 seconds—likely, you’d be long gone. Or, if you’re
making predictions about financial transactions, mere milliseconds could mean mak-
ing or losing a lot of money.

 Various approaches are available to make your predictions faster, such as upgrad-
ing your hardware or using more-efficient algorithms or implementations of an algo-
rithm. You can also optimize the network and make sure that the client is as physically
close to your servers as possible. In addition, you shouldn’t call any other service that
may introduce additional latency, such as recording the predictions to a database, or
waiting for the data to be written to disk and replicated across a cluster. In the follow-
ing example, we’ll assume that you’ve already considered these points. Now you’ll
take a look at two architectures for serving real-time predictions.

 The first architecture for fast predictions is similar to the architecture introduced
in the preceding scale-by-volume section, but requires more workers. The basic idea is
that each prediction request is sent to multiple workers at once, and the first predic-
tion that finishes is sent back to the customer. Figure 9.8 shows an example of this
architecture.

Prediction
workers

Prediction
storage

Prediction
dispatcherClient

Dispatcher returns the
first prediction that
returns within the
timeout. The others
are discarded.

Dispatcher records
results to the database
after returning to client,
to keep latency low.

Figure 9.8 A possible 
architecture for a 
prediction pipeline with 
low-latency requirements. 
A prediction dispatcher 
sends the prediction job to 
multiple workers, hoping 
that at least one will return 
predictions in time. It will 
return the first one that 
comes back to the client, 
and afterward record it in a 
log or database for later 
inspection and analytics 
(in the background, 
possibly while already 
working on the next 
prediction).
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Another approach to real-time predictions is to make predictions in parts so the com-
putation can be distributed among multiple machines. Ensemble methods comprise a
class of algorithms that lend themselves well to this approach. We’ll again use random
forests as an example here.

 Random forest models consist of an ensemble of decision trees. The algorithm
makes a prediction from each tree and (in the case of classification) counts the votes
from each tree into the final probability. For example, if there are 10 trees and 6 of
them vote yes for a particular prediction instance, the forest returns 6/10, or 60%, as
the answer. Usually, the larger the total number of trees queried, the more accurate
and confident the results. This can be used in a real-time prediction system to trade
accuracy for speed. If each prediction node is responsible for a tree or list of trees
from the forest, you ask each for a prediction. Whenever a node finishes predicting on
its own trees, the result is returned to a collector service that collects results from all
nodes and makes the final prediction. The collector can observe a time limit and at
any time return the prediction in its current state, if necessary. For example, if only 20
of 1,000 trees have returned anything, the user gets an answer, but it’s not as accurate
as it could have been had all 1,000 trees had time to return an answer. 

 Figure 9.9 shows a diagram of this architecture in action.

Prediction
workers

Prediction
storage

Prediction
producer

Prediction
consumer

Client

Prediction producer asks workers for
a partial prediction. Consumer collects
answers until time runs out, then
returns the result to the client.

Consumer records
results to the database
after returning to client,
to keep latency low.

Figure 9.9 Suggested architecture for a prediction pipeline that’s guaranteed 
to return within a certain time, potentially sacrificing prediction accuracy and 
confidence if some of the partial predictions haven’t returned yet. Prediction 
requests are shipped to workers by the producer, while a consumer service 
collects partial predictions ready to return to the client if time is up.
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A few systems are showing promise in supporting these scalable, real-time systems.
One is part of the previously mentioned Apache Spark ecosystem: Spark Streaming.
With Spark Streaming, you get a set of tools and libraries that makes it easier to build
real-time, stream-oriented data-processing pipelines. Don’t forget that any prediction
made usually has to go through the same feature-engineering processes that the train-
ing data went through at model-building time.

 Other projects include Apache Storm, Apache Kafka, AWS Kinesis, and Turi. Each
project has pros and cons for particular use cases, so we encourage you to investigate
the appropriate tool for your needs.

9.4 Summary
In this chapter, you’ve investigated various ways to scale machine-learning systems to
large datasets by transforming the data or building a horizontally scalable multima-
chine infrastructure. The main takeaways from the chapter are as follows:

■ Scaling up your machine-learning system is sometimes necessary. These are some
common reasons:
– The training data doesn’t fit on a single machine.
– The time to train a model is too long.
– The volume of data coming in is too high.
– The latency requirements for predictions are low.

■ Sometimes you can avoid spending time and resources on a scalable infrastruc-
ture by doing the following:
– Choosing a different ML algorithm that’s fast or lean enough to work on a

single machine without sacrificing accuracy
– Subsampling the data
– Scaling up vertically (upgrading the machine)
– Sacrificing accuracy or easing other constraints if it’s still cheaper than scal-

ing up
■ If it’s not possible to avoid scaling up in a horizontal fashion, widely used sys-

tems are available for setting up a scalable data-management and processing
infrastructure:
– The Hadoop ecosystem with the Mahout machine-learning framework
– The Spark ecosystem with the MLlib machine-learning library
– The Turi (formerly GraphLab) framework
– Streaming technologies such as Spark Streaming, Apache Storm, Apache

Kafka, and AWS Kinesis
■ When scaling up a model-building pipeline, consider the following:

– Choosing a scalable algorithm such as logistic regression or linear SVMs
– Scaling up other (for example, nonlinear) algorithms by making data and

algorithm approximations
– Building a scalable version of your favorite algorithm using a distributed

computing infrastructure
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■ Predictions can be scaled in both volume and velocity. Useful approaches include
the following:
– Building your infrastructure so that it allows you to scale up the number of

workers with the prediction volume
– Sending the same prediction to multiple workers and returning the first one

in order to optimize prediction velocity
– Choosing an algorithm that allows you to parallelize predictions across multi-

ple machines

9.5 Terms from this chapter

Word Definition

big data A broad term usually used to denote data management and pro-
cessing problems that can’t fit on single machines.

horizontal/vertical scaling Scaling out horizontally means adding more machines to handle 
more data. Scaling up vertically means upgrading the hardware of 
your machines.

Hadoop, HDFS, MapReduce, 
Mahout

The Hadoop ecosystem is widely used in science and industry for 
handling and processing large amounts of data. HDFS and MapRe-
duce are the distributed storage and parallel processing systems 
respectively, and Mahout is the machine-learning component of the 
Hadoop ecosystem.

Apache Spark, MLlib Apache Spark is a newer project that tries to keep data in memory 
to make it much more efficient than the disk-based Hadoop. MLlib is 
the machine-learning library that comes with Spark.

data locality Doing computation on the data where it resides. Data transfer can 
often be the bottleneck in big-data projects, so avoiding transferring 
data can result in a big gain in resource requirements.

polynomial features A trick to extend linear models to include nonlinear polynomial fea-
ture interaction terms without losing the scalability of linear learning 
algorithms.

Vowpal Wabbit An ML tool for building models efficiently on large datasets without 
necessarily using a full big-data system such as Hadoop.

out-of-core Computations are done out of core if you need to keep only the cur-
rent iteration of data in memory.

histogram approximations Approximations of the training data that convert all columns to histo-
grams for the learning process.

feature selection Process of reducing the size of training data by selecting and retain-
ing the best (most predictive) subset of features.

Lasso Linear algorithm that selects the most predictive subset of features. 
Very useful for feature selection.
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deep neural nets An evolution of neural nets that scales to larger datasets and 
achieves state-of-the-art accuracy. Requires more knowledge and 
computational resources in practice than other algorithms, depend-
ing on the dataset and problem at hand.

prediction volume/velocity Scaling prediction volume means being able to handle a lot of data. 
Scaling velocity means being able to do it fast enough for a specific 
real-time use case.

accuracy vs. speed For real-time predictions, you can sometimes trade accuracy of the 
prediction for the speed with which the prediction is made.

Spark Streaming, Apache Storm, 
Apache Kafka, AWS Kinesis

Upcoming technologies for building real-time streaming systems. 

Word Definition



Example: digital
display advertising
Chapter 9 presented techniques that enable you to scale your machine-learning
workflow. In this chapter, you’ll apply those techniques to a large-scale real-world
problem: optimizing an online advertising campaign. We begin with a short intro-
duction to the complex world of online advertising, the data that drives it, and
some of the ways it’s used by advertisers to maximize return on advertising spend
(ROAS). Then we show how to put some of the techniques in chapter 9 to use in
this archetypal big-data application.

 We employ several datasets in our example. Unfortunately, only a few large
datasets of this type are available to the public. The primary dataset in our example

This chapter covers
■ Visualizing and preparing a real-world dataset
■ Building a predictive model of the probability

that users will click a digital display
advertisement

■ Comparing the performance of several
algorithms in both training and prediction
phases

■ Scaling by dimension reduction and parallel
processing
214
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isn’t available for download, and even if it were, it would be too large for personal
computing. 

 One dataset that can be downloaded and used for noncommercial purposes is
from the Kaggle Display Advertising Challenge sponsored by Criteo, a company whose
business is optimizing the performance of advertising campaigns. The Criteo data-
set contains more than 45 million observations of 39 features, of which 13 are numer-
ical and 26 categorical. Unfortunately, as is common for datasets used in data science
competitions, the meaning of the features is obfuscated. The variable names are V1
through V40. V1 is the label, and V2 through V40 are features. In the real world,
you’d have the benefit of knowing what each feature measures or represents. But as
the competition proved, you can nonetheless explore their predictive value and cre-
ate useful models.

 The Criteo dataset is available at https://s3-eu-west-1.amazonaws.com/criteo-labs/
dac.tar.gz.

10.1 Display advertising
Half the money I spend on advertising is wasted; the trouble is, I don’t
know which half.

—John Wannamaker

In the days of Mad Men, this was an inescapable truth. But with digital advertising
comes the opportunity to discover what works and what doesn’t via the data collected
as users interact with online ads.

 Online advertising is delivered through a myriad of media. Display ads appear
within web pages rendered in browsers, usually on personal computers or laptops.
Because the rules for identifying users and the handling of internet cookies are differ-
ent on mobile browsers, mobile ad technology relies on a different set of techniques
and generates quite different historical data. Native ads, embedded in games and
mobile apps, and pre-roll ads that precede online video content, are based on distinct
delivery technologies and require analyses tailored to their unique processes. Our
examples are limited to traditional display advertising.

 Much of the terminology of display advertising was inherited from the print adver-
tising business. The websites on which ads can be purchased are known as publications,
within which advertising space is characterized by size and format, or ad unit, and loca-
tion within the site and page is referred to as placement. Each presentation of an ad is
called an impression. Ads are sold in lots of 1,000 impressions, the price of which is
known as CPM, (cost per thousand).

 When a user browses to a web page—say, xyz.com—it appears that the publisher of
xyz.com delivers the entire page. In reality, the page contains placeholders for adver-
tisements that are filled in by various advertisers through a complex network of inter-
mediaries. Each web server that delivers ads maintains logs that include information
about each impression, including the publisher, the internet address of the user, and

https://s3-eu-west-1.amazonaws.com/criteo-labs/dac.tar.gz
https://s3-eu-west-1.amazonaws.com/criteo-labs/dac.tar.gz
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information contained in internet cookies, where information about previous deliveries
from the advertiser’s server may be stored. In the next section, you’ll look at the sorts
of data that’s captured during a display ad campaign.

10.2 Digital advertising data
Web servers capture data for each user request, including the following:

■ Client address—The IP address of the computer that made the request.
■ Request—The URL and parameters (for example, http://www.abc.com?x=1234&y

=abc01).
■ Status—The response code issued by the server; usually 200, indicating success-

ful response.
■ Referrer—The web page from which the user linked to the current page.
■ User agent—A text string that identifies the browser and operating system mak-

ing the request.
■ Cookie—A small file stored when a browser visits a website. When the site is vis-

ited again, the file is sent along with the request.

In addition, many modern advertisements are served in conjunction with measurement
programs—small JavaScript programs that capture information such as the following:

■ Viewability—Whether and for how long the advertisement was displayed.
■ User ID—Browser cookies are used to leave behind unique identifiers so that

users can be recognized when encountered again.
■ Viewable seconds—Number of seconds advertisement was in view.

Figure 10.1 shows sample data from a campaign. Viewability data is extracted from a
query string, and user_id is a randomly generated identifier that associates users with
previous visits.

10.3 Feature engineering and modeling strategy
Click is our target variable. You want to predict the likelihood that impressions will
result in clicks (sometimes called click-throughs or click-thrus). More specifically, given
a specific user visiting a particular site, you’d like to know the probability that the
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Figure 10.1 Impression data. Domain names are randomly generated substitutes for the real names.
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user will click the advertisement. You have several choices in formulating the prob-
lem. You can try to predict the probability that a given user will click through, and
you can try to predict the click-through rate (CTR) for each publisher that presents
the ad. 

 As is often the case, precisely what you model and the precise values you endeavor
to predict will ultimately be driven by asking these questions: How will the prediction be
used? In what manner will it be acted on? In this case, our advertiser has the option of
blacklisting certain publications, so the advertiser’s primary concern is identifying the
publications least likely to yield clicks. In recent years, real-time bidding technologies
have been developed that enable advertisers to bid for individual impressions based
on user and publication features provided by the bidding system, but our example
advertiser hasn’t adopted real-time bidding yet. 

 You might wonder at this point why the advertiser doesn’t just look at some histori-
cal data for all the publications and blacklist those with low CTRs. The problem is that
when the overall CTR for a campaign is in the neighborhood of 0.1%, the expected
value of clicks for a publication with only a few impressions is zero. The absence of
clicks doesn’t indicate a low CTR. Further, when we aggregate the best-performing,
low-volume publications, we often observe above-average CTR (so just blacklisting all
the low-volume pubs isn’t a good strategy). You’re looking for a model that will enable
you to predict publications’ performance without the benefit of a great deal of perfor-
mance history.

 At first glance, you might imagine you don’t have much to work with. You can
count impressions, clicks, and views for users, publishers, and operating systems.
Maybe time of day or day of the week has some effect. But on further reflection, you
realize that the domains a user visits are features that describe the user, and the
users who visit a domain are features of the domain. Suddenly, you have a wealth of
data to work with and a real-world opportunity to experience the curse of dimensional-
ity—a phrase used to describe the tribulations of working in high-dimensional space.
As you explore the data, you’ll see that a wealth of features can be, if not a curse, a
mixed blessing.

 You may recognize the logic you’ll apply here as the basis of recommenders, the sys-
tems that suggest movies on Netflix, products on Amazon, and restaurants on Yelp.
The idea of characterizing users as collections of items, and items as collections of
users, is the basis of collaborative filtering, in which users are clustered based on com-
mon item preferences, and items are clustered based on the affinities of common
users. Of course, the motivation for recommenders is to present users with items
they’re likely to purchase. The advertising problem is a variation; instead of many
items, the same advertisement is presented in a wide variety of contexts: the publica-
tions. The driving principle is that the greatest likelihood of achieving user responses
(clicks) will be on publications that are similar to those that have a history of achiev-
ing responses. And because similarity is based on common users, pubs chosen in this
manner will attract people who are similar in their preferences to past responders.
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10.4 Size and shape of the data
You’ll start with a sample of 9 million observations, a small-enough sample to fit into
memory so you can do some quick calculations of cardinality and distributions.

%matplotlib inline
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

df = pd.read_pickle('combined.pickle')    

nImps = len(df)
nPubs = len(df.pub_domain.unique())
nUsers = len(df.user_id.unique())

print('nImps={}\nnPubs={}\nnUsers={}'.format(nImps, nPubs, nUsers))

nImps=9098807
nPubs=41576
nUsers=3696476

(nPubs * nUsers) / 1000000    

153684

Fortunately, most users never visit most of the domains, so the user/item matrix is
sparsely populated, and you have tools at your disposal for dealing with large, sparse
matrices. And nobody said that users and domains must be the rows and columns of a
gigantic matrix, but it turns out that some valuable algorithms work exceptionally well
when it’s possible to operate on a user/item matrix in memory. 

 Oh, and one more thing: the 9 million observations referenced in listing 10.1 rep-
resent roughly 0.1% of the data. Ultimately, you need to process roughly 10 billion
impressions, and that’s just one week’s worth of data. We loaded the data from 9 mil-
lion impressions into about 53% of the memory on an Amazon Web Services (AWS)
instance with 32 GB of RAM, so this will certainly get more interesting as you go.

 Next, let’s look at how the data is distributed over the categorical variables. In list-
ing 10.1, we already started this process by computing the cardinality of pub_domain
and user_id. 

import seaborn as sns   

nClicks = df.click.value_counts()[True]
print('nClicks={} ({}%)'
.format(nClicks, round(float(nClicks) * 100 / nImps, 2)))

Listing 10.1 A first look at the data

Listing 10.2 Distributions

Loads data from a 
compressed archive

Number of impressions

Number of publisher domains

Number of distinct users

Size of the user/item matrix divided 
by 1 million for readability

153.684 billion cells—a 
rather large matrix

Seaborn is a statistical 
visualization library.
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nClicks=10845 (0.12%)

nViews = df.viewed.value_counts()[True]
print('nViews={} ({}%)'.format(nViews, 
round(float(nViews) * 100 / nImps, 2)))

nViews=3649597 (40.11%)

df.groupby('pub_domain').size()    

pub_domain
D10000000.com 321
D10000001.com 117
D10000002.com 124
D10000003.com 38
D10000004.com 8170
…

f = df.groupby('pub_domain').size()
f.describe()

count 41576.000000
mean 218.847580
std 6908.203538
min 1.000000
25% 2.000000
50% 5.000000
75% 19.000000
max 1060001.000000

sns.distplot(np.log10(f)); 

Figure 10.2 shows that many domains have a small number of impressions, and a few
have large numbers of impressions. So that you can see the distribution graphically,
we plotted the base 10 log rather than the raw frequencies (we use base 10 so you can
think of the x-axis as 100, 101, 102…).

 Perhaps most significantly, you can see that clicks are relatively rare, only 0.12%, or
0.0012. This is a respectable overall click-through rate. But for this example, you need
large datasets in order to have enough target examples to build your model. This isn’t

Group by domain and look 
at number of impressions 
per domain
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Figure 10.2 The histogram of 
impression data shows that the 
distribution of the number of 
impressions over publisher 
domains is heavily skewed.
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unusual. We’re often trying to predict relatively rare phenomena. The capacity to pro-
cess huge datasets by using big-data technologies has made it possible to apply
machine learning to many whole new classes of problems.

 Similarly, impression frequency by user_id is highly skewed. An average user has
2.46 impressions, but the median is 1, so a few heavy hitters pull the mean higher.

10.5 Singular value decomposition
Chapters 3 and 7 mentioned principal component analysis, or PCA, an unsupervised
ML technique often used to reduce dimensions and extract features. If you look at
each user as a feature of the publications they’ve interacted with, you have approxi-
mately 3.6 million features per publication, 150 billion values for your exploratory
sample of data. Obviously, you’d like to work with fewer features, and fortunately you
can do so fairly easily.

 As it turns out, PCA has several algorithms, one of which is singular value decomposi-
tion, or SVD. You can explain and interpret SVD mathematically in various ways, and
mathematicians will recognize that our explanation here leaves out some of the
beauty of the underlying linear algebra. Fortunately, like the latent semantic analysis
covered in chapter 7, SVD has an excellent implementation in the scikit-learn Python
library. But this time, let’s do just a little bit of the matrix algebra. If you’ve done
matrix multiplication, you know that dimensions are important. If A[n x p] denotes an
n-by-p matrix, you can multiple A by another matrix whose dimensions are p by q (for
example, B[p x q]), and the result will have dimensions of n by q (say, C[n x q]). It turns
out that any matrix can be factored into three components, called the left and right
singular vectors and the singular values, respectively.

 In this example, n is the number of users, each of which is represented by a row in
matrix A, and p is the number of pubs, each of which is represented by a column:

What makes this interesting is that the singular values tell you something about the
importance of the features represented by the left and right singular vectors (the vec-
tors are the rows of U and VT). In particular, the singular values tell you the extent to
which the corresponding feature vectors are independent. Consider the implication
of interdependent or covariant features. Or to make it a bit easier, imagine that two

A is a matrix with n
rows and p columns.

Left singular
vectors

A[n × p] = U[n × n] S[n × p] VT
[p × p]

Singular values

Right singular
vectors
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features, A and B, are identical. After feature A has been considered by the model,
feature B has nothing to contribute. It contains no new information. As builders of
predictive models, the features you want are independent, and each one is at least a
weak predictor of your target. If you have many weak predictors, so long as their pre-
dictions are better than random, in combination they gain strength. But this phenom-
enon, the ensemble effect, works only when features are independent.

 Let’s run SVD on our advertising data and have a look at the resulting singular values. 

user_idx, pub_idx = {}, {}
for i in range(len(users)):
    user_idx[users[i]] = i
for i in range(len(pubs)):
    pub_idx[pubs[i]] = i

nTrainUsers = len(df.user_id.unique())
nTrainPubs = len(df.pub_domain.unique())
V = sp.lil_matrix((nTrainUsers, nTrainPubs))
def matput(imp):
if imp.viewed:

V[user_idx[imp.user_id], pub_idx[imp.pub_domain]] = 1

df5[df5.click == True].apply(matput, axis=1)

# run svds (svd for sparse matrices)

u, s, vt = svds(V, k = 1550)

plt.plot(s[::-1])

When you ran SVD, you used the k = maximum singular values parameter to limit the
calculation to the 1,550 largest singular values. Figure 10.3 shows their magnitude;

Listing 10.3 SVD on advertising data

First substitutes 
integer indices for user 
and pub symbolic keys

Creates a sparse matrix 
of user/pub interactions
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Figure 10.3 Singular values for advertising data
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you can see that there are about 1,425 nonzero values, and that beyond the 450 most
independent feature vectors, the rest are highly covariant. This isn’t surprising.
Although there are over 3 million users, remember that most of them interact with
very few pubs. Consider that of these, 136,000 were observed exactly once (on ebay.com,
by the way). So if each user vector is a feature of the pub, ebay.com has 136,000 fea-
tures that are identical.

 Our SVD reduced more than 3 million features to around 7 thousand, a 400:1
reduction. Knowing this, you have a much better sense of the resources that will be
needed. In the next section, you’ll look at ways to size and optimize the resources nec-
essary to train your models.

10.6 Resource estimation and optimization
So far, you’ve looked at the cardinalities and distributions that characterize your data
and done some feature engineering. In this section, you’ll assess the task at hand in
terms of the computational workload relative to the resources you have at your disposal.

 To estimate resource requirements, you need to start with some measurements.
First let’s look at your available resources. So far, you’ve been using a single m4.2xlarge
Amazon EC2 instance. Let’s decode that quickly. EC2 is Amazon’s Elastic Compute
Cloud. Each instance is a virtual server with dedicated CPU, random access memory
(RAM), and disk or solid-state online storage. The m4.2xlarge designation means a
server with eight cores and 32 GB of memory. Disk space is provisioned separately.
Our single instance has 1 terabyte of elastic block storage (EBS). EBS is virtualized
storage, set up so that it appears that your instance has a dedicated 1 TB disk vol-
ume. You’ve set up your instance to run Linux. Depending on your needs, you can
easily upgrade your single instance to add cores or memory, or you can provision
more instances.

 Next, let’s have a look at your workload. Your raw data resides in transaction files
on Amazon’s Simple Storage Service, S3, which is designed to store large quantities of
data inexpensively. But access is a lot slower than a local disk file. Each file contains
around 1 million records. You can read approximately 30,000 records per second
from S3, so if you process them one at a time, 10 billion will take about 92 hours.
Downloading from S3 can be speeded up by around 75%, by processing multiple
downloads in parallel (on a single instance), so that gets you down to 23 hours. 

 But speed isn’t your only problem. Based on your earlier observation that 10 mil-
lion records loaded into memory consume 53% of your 32 GB of memory, it would
take 1.7 terabytes of memory to load your entire dataset. Even if you could afford it,
Amazon doesn’t have an instance with that much RAM. 

 Fortunately, you don’t need all the data in memory. Furthermore, your require-
ment isn’t just a function of the size of the data, but of its shape—by which we mean
the cardinality of its primary keys. It turns out that there are 10 billion records, but
only about 10 million users and around 300 thousand pubs, which means the user/
pub matrix is around 3 trillion entries. But when you populated your sparse matrix,



223Resource estimation and optimization
there were values in only about 0.01% of the cells, so 3 trillion is reduced to 300 million.
Assuming one 64-bit floating-point number per value, your user/pub matrix will fit in
about 2.5 of your 32 GB.

 To cut processing time, you need to look at doing things in parallel. Figure 10.4
illustrates using worker nodes (additional EC2 instances, in this case) to ingest the raw
data in parallel.

The worker nodes do more than read the data from S3. Each one independently
builds a sparse matrix of users and items. When all the workers are finished with their
jobs, these are combined by your compute node. 

 Chapter 9 described some big-data technologies: Hadoop, MapReduce, and
Apache Spark. The processes described here are a highly simplified version of what
happens in a MapReduce job. A large task is broken into small units, each of which is
dispatched (mapped) to a worker. As workers complete their subtasks, the results are
combined (reduced), and that result is returned to the requestor. Hadoop optimizes
this process in several ways. First, rather than having the workers retrieve data over a
network, each worker node stores part of the data locally. Hadoop optimizes the
assignment of tasks so that whenever possible, each node works on data that’s already
on a local volume. Spark goes one step further by having the worker nodes load the
data into memory so they don’t need to do any I/O operations in order to process
the tasks they’re assigned.

 Although this example problem is large enough to require a little parallel process-
ing, it’s probably not worth the effort required to implement one of these frameworks.
You need to run your entire workflow only once per day, and you could easily add a
few more instances and get the whole process down to an hour or less. But you can
easily imagine an application requiring you to run a variety of processes at a greater

High-volume
storage

Worker node

Worker node

Worker node

Worker node

Compute
node

Compute
node

High-volume
storage

23 hours

5.75 hours

Figure 10.4 Parallel processing scales the initial data acquisition.
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frequency, where having the worker nodes retain the raw data in memory over the
course of many processing cycles would boost performance by orders of magnitude.

10.7 Modeling
Your goal for the model is to predict CTR for each pub. You started with user interac-
tions as features and used SVD to reduce the feature space. From here, there are sev-
eral approaches to making predictions. Your first model will be a k-nearest neighbors
(KNN) model. This is a simple but surprisingly effective recommender model. 

 You’ll also train a random forest regressor. Random forests are a form of decision-tree-
based learning; many random samples of data and random subsets of the feature set
are selected, and decision trees are constructed for each selection. 

10.8 K-nearest neighbors
Figure 10.5 shows simplified user/item and dissimilarity matrices. Notice that the
diagonal of the dissimilarity matrix is all zeros because each pub’s user vector (column
in the user/item matrix) is identical to itself, and therefore zero distance from itself.
You can see that the distance between pub3, pub4, and pub7 is zero, as you’d expect,
because their respective columns in the user/item matrix are identical. Also note that
pub1’s distance to pub5 is the same as pub5’s distance to pub1. In other words, dissim-
ilarity is symmetric. Interestingly, some recommender algorithms don’t define dis-
tance symmetrically. Item A may be like item B, but item B isn’t like item A.
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Figure 10.5 The dissimilarity, or 
distance, matrix shows the extent 
to which user interactions are 
similar or different. In this example, 
the user/item matrix is binary, 
indicating whether the user has 
interacted with the pub. 
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You compute the similarity (actually, dissimilarity, or distance) between each pair of
pubs, using one of several available measures. You then choose the most common, the
Euclidean distance.

 After you’ve computed pairwise distances, the next step is to compute your pre-
dicted CTR for each pub. In KNN, the predicted target value is calculated by averag-
ing the values of the target values for k-nearest neighbors, presuming that each
example observation will be most similar to its nearest neighbors. There are several
important questions at this juncture. First, what should you choose for the value of k?
How many neighbors should be considered? Also, it’s common to give greater weight
to the closest neighbors, usually by weighting the calculation of the mean target value
by 1/distance  or [1/distance]2. 

 Listing 10.4 shows a calculation of predicted values for a range of possible values of
k by using scikit-learn NearestNeighbors. Here you try three weighting formulas,
each of 20 values of k. Figure 10.6 shows that the best predictors are one or two near-
est neighbors, and averaging over a larger range offers no real improvement. This is
probably because our data is sparse, and nearest neighbors are often fairly distant.
Note that the variation over the values of k is also small. In any case, the normalized
RMSE for our test set predictions is in the range of 5%. Not bad!

from sklearn.neighbors import NearestNeighbors

weightFunctions = {
    'f1': lambda x: [1 for i in range(len(x))],  
    'f2': lambda x: 1 / x,
    'f3': lambda x: 1 / x ** 2
}

for idx, f in enumerate(weightFunctions):
    rmseL = []
    wf = weightFunctions[f]
    for nNeighbors in range(1,20, 1):

neigh = NearestNeighbors(nNeighbors)   

neigh.fit(VT)
act = pd.Series()
pred= pd.Series()

for i in range(TT.shape[0]):
d = neigh.kneighbors(tt[i,:], return_distance=True)
W = pd.Series([v for v in d[0][0]])
y = pd.Series(pubsums.iloc[d[1][0]].CTR)
act.append(pd.Series(tsums.iloc[i].CTR))
pred.append(pd.Series(np.average(y, weights = wf(W))))

Listing 10.4 KNN predictions

Equal weights

1/dist

1/dist squared

For each of the three weighting 
schemes, computes predicted 
target values for k = 1 through 20

Initializes

Finds k-nearest neighbors; VT is user/
item transposed of the training set

TT is user/item transposed 
of the test set

    mse = act.sub(pred).pow(2).mean() / (pred.max() - pred.min()) 
    mseL.append(rmse)
    plt.subplot(130+idx+1)
    plt.plot(range(1,20,1), mseL)
    plt.tight_layout(pad=2.0)
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10.9 Random forests
In the training phase of random forests, data is sampled repeatedly, with replacement,
in a process called bagging, sometimes called bootstrap aggregating. For each sample, a
decision tree is constructed using a randomly selected subset of the features. To make
predictions on unseen data, each decision tree is evaluated independently, and the
results are averaged (for regression) or each tree “votes” for classification. For many
applications, random forests may be outperformed by other algorithms such as
boosted trees or support vector machines, but random forests have the advantages
that they’re easy to apply, their results are easy to interpret and understand, and the
training of many trees is easily parallelized. Once again, you’ll use scikit-learn; see fig-
ure 10.7.
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Figure 10.6 RMSE for three weighting functions and values of k = 1 to k = 30
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from sklearn.ensemble import RandomForestRegressor
from sklearn import cross_validation

features = ['exposure', 'meanViewTime', 'nImps', 'reach', 'reachRate',  
'vImps', 'vRate', 'vReach', 'vReachRate']

X_train, X_test, y_train, y_test =  cross_validation.train_test_split(  
df[features], df.CTR, test_size=0.40, random_state=0)

reg = RandomForestRegressor(n_estimators=100, n_jobs=-1)
model = reg.fit(X_train, y_train)

scores = cross_validation.cross_val_score(model, X_train, y_train)    
print(scores, scores.mean())

([ 0.62681533,  0.66944703,  0.63701492]), 0.64442575999999996)

model.score(X_test, y_test)

0.6135074515145226

plt.rcParams["figure.figsize"] = [12.0, 4.0]
plt.bar(range(len(features)), model.feature_importances_, align='center')
_ = plt.xticks(range(len(features)), features)

The optimized random forest regression provides a useful prediction of CTR, but
it’s not as good as the KNN prediction. Your next steps might be to explore ways to
combine these, and possibly other, models. Methods that combine models in this
way are called ensemble methods. Random forests are, in their own right, an ensemble
method, as bagging is a way of generating multiple models. To combine entirely dif-
ferent models such as the two in this example, you might employ stacking, or stacked
generalization, in which the predictions from multiple models become features that
are combined by training and prediction using yet another ML model, usually logis-
tic regression.

10.10 Other real-world considerations
You looked at the real-world issues that come with big data: high dimensionality,
computing resources, storage, and network data transfer constraints. As we men-
tioned briefly, the entire process may be replicated for several species of digital ads:
mobile, video, and native. Real-time bidding and user-level personalization have an
entirely different set of concerns. The data at your disposal may vary widely from
one program to the next, and the models that work perfectly in one situation may
fail entirely for another.

Listing 10.5 Random forest regression

features are simple
aggregates by pub

Splits data into test and train, 
features and targets; trains on 
60% of the data, holds out 40% 
for test

Runs the random forest regression with 100 trees;
n_jobs parameter tells RF to use all available cores

Cross-validation splits training
set to evaluate the model

Runs the model 
on the test set
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 In our example, we had a large historical dataset to start with. But our recom-
mender-like approach has an issue known as the cold-start problem. When a new user or
a new product enters the system with no history to rely on, you have no basis for build-
ing associations. For our purposes, a few unknowns don’t matter, but when a new cam-
paign starts from scratch, you have no history at all to work with. Models built on the
basis of other similar campaigns may or may not be effective. 

 In the real world, there’s a great advantage to having a variety of tools and mod-
els that can be employed. The larger and more complex the environment, the greater
the benefit of having such a suite of feature-building, data-reduction, training, pre-
diction, and assessment tools well organized and built into a coherent automated
workflow.

 Advertising is a great example of a business in which externalities may diminish
the effectiveness of your predictive models. As technology and business practices
change, behaviors change. The growth of mobile devices has changed the digital land-
scape dramatically. Real-time bidding completely changes the level on which you
apply optimization. New forms of fraud, ad blockers, new browsers, and new web tech-
nology all change the dynamics that you’re modeling. In the real world, models are
built, tested, deployed, measured, rebuilt, retested, redeployed, and measured again. 

 Digital advertising is a multibillion-dollar business, and for the brands that rely on
it, optimizations that reduce wasted expenditures, even a little, can have a significant
return on investment. Each wasted impression you can eliminate saves money, but
when replaced with one that results in gaining a customer, the benefit will be far
greater than the cost savings—and will more than justify the effort to overcome the
many challenges of this dynamic business.

10.11 Summary
This chapter covered elements of a real-world machine-learning problem somewhat
more broadly than just choosing algorithms, training, and testing models. Although
these are the heart of the discipline of machine learning, their success often depends
on surrounding practicalities and trade-offs. Here are some of the key points from this
chapter’s example:

■ The first step is always to understand the business or activity you’re modeling,
its objectives, and how they’re measured. It’s also important to consider how
your predictions can be acted on—to anticipate what adjustments or optimiza-
tions can be made based on the insight you deliver.

■ Different feature-engineering strategies may yield very different working data-
sets. Casting a wide net and considering a range of possibilities can be benefi-
cial. In the first model, you expanded the feature set vastly and then reduced it
using SVD. In the second, you used simple aggregations. Which approach
works best depends on the problem and the data.

■ After exploring a subsample of data, you were able to estimate the computing
resources needed to perform your analyses. In our example, the bottleneck
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wasn’t the ML algorithms themselves, but rather the collection and aggregation
of raw data into a form suitable for modeling. This isn’t unusual, and it’s impor-
tant to consider both prerequisite and downstream workflow tasks when you
consider resource needs.

■ Often, the best model isn’t a single model, but an ensemble of models, the pre-
dictions of which are aggregated by yet another predictive model. In many real-
world problems, practical trade-offs exist between the best possible ensembles
and the practicality of creating, operating, and maintaining complex workflows.

■ In the real world, there are often a few, and sometimes many, variations on the
problem at hand. We discussed some of these for advertising, and they’re com-
mon in any complex discipline.

■ The underlying dynamics of the phenomena you model often aren’t constant.
Business, markets, behaviors, and conditions change. When you use ML models
in the real world, you must constantly monitor their performance and some-
times go back to the drawing board.

10.12 Terms from this chapter

10.13 Recap and conclusion
The first goal in writing this book was to explain machine learning as it’s practiced in
the real world, in an understandable and interesting way. Another was to enable you

Word Definition

recommender A class of ML algorithms used to predict users’ affinities for various items.

collaborative 
filtering

Recommender algorithms that work by characterizing users via their item prefer-
ences, and items by the preferences of common users.

ensemble method An ML strategy in which multiple models’ independent predictions are combined.

ensemble effect The tendency of multiple combined models to yield better predictive performance 
than the individual components.

k-nearest neigh-
bors

An algorithm that bases predictions on the nearest observations in the training 
space.

Euclidean 
distance

One of many ways of measuring distances in feature space. In two-dimensional 
space, it’s the familiar distance formula.

random forest An ensemble learning method that fits multiple decision tree classifiers or regres-
sors to subsets of the training data and features and makes predictions based on 
the combined model.

bagging The process of repeated sampling with replacement used by random forests and 
other algorithms.

stacking Use of a machine-learning algorithm, often logistic regression, to combine the pre-
dictions of other algorithms to create a final “consensus” prediction.
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to recognize when machine learning can solve your real-world problems. Here are
some of the key points:

■ Machine-learning methods are truly superior for certain data-driven problems.
■ A basic machine-learning workflow includes data preparation, model building,

model evaluation, optimization, and prediction.
■ Data preparation includes ensuring that a sufficient quantity of the right data

has been collected, visualizing the data, exploring the data, dealing with miss-
ing data, recoding categorical features, performing feature engineering, and
always watching out for bias.

■ Machine learning uses many models. Broad classes are linear and nonlinear,
parametric and nonparametric, supervised and unsupervised, and classification
and regression.

■ Model evaluation and optimization involves iterative cross-validation, perfor-
mance measurement, and parameter tuning.

■ Feature engineering enables application of domain knowledge and use of unstruc-
tured data. It can often improve the performance of models dramatically.

■ Scale isn’t just about big data. It involves the partitioning of work, the rate at
which new data is ingested, training time, and prediction time, all in the con-
text of business or mission requirements.

The mathematics and computer science of machine learning have been with us for 50
years, but until recently they were confined to academia and a few esoteric applica-
tions. The growth of giant internet companies and the propagation of data as the
world has gone online have opened the floodgates. Businesses, governments, and
researchers are discovering and developing new applications for machine learning
every day. This book is primarily about these applications, with just enough of the
foundational mathematics and computer science to explain not just what practitioners
do, but how they do it. We’ve emphasized the essential techniques and processes that
apply regardless of the algorithms, scale, or application. We hope we've helped to
demystify machine learning and in so doing helped to advance its use to solve impor-
tant problems.

 Progress comes in waves. The computer automation wave changed our institu-
tions. The internet tidal wave changed our lives and our culture. There are good rea-
sons to expect that today’s machine learning is but a preview of the next wave. Will it
be a predictable rising tide, a rogue wave, or a tsunami? It’s too soon to say, but adop-
tion isn’t just proceeding; it’s accelerating. At the same time, advances in machine-
learning tools are impressive, to say the least. Computer systems are advancing in
entirely new ways as we program them to learn progressively more-abstract skills.
They’re learning to see, hear, speak, translate languages, drive our cars, and anticipate
our needs and desires for goods, services, knowledge, and relationships.

 Arthur C. Clark said that any sufficiently advanced technology is indistinguishable
from magic (Clark’s third law). When machine learning was first proposed, it did
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sound like magic. But as it has become more commonplace, we’ve begun to under-
stand it as a tool. As we see many examples of its application, we can generalize (in the
human sense) and imagine other uses without knowing all the details of its internal
workings. Like other advanced technologies that were once seen as magic, machine
learning is coming into focus as a natural phenomenon, in the end more subtle and
beautiful than magic.

Further reading
For those of you who’d like to learn more about using ML tools in the Python language,
we recommend Machine Learning in Action by Peter Harrington (Manning, 2012).

For a deep dive with examples in the R language, consider Applied Predictive Modeling
by Max Kuhn and Kjell Johnson (Springer, 2013).

Cathy O’Neil describes her and Rachel Schutt’s book, Doing Data Science: Straight
Talk from the Frontline (O'Reilly Media, 2013) as “a course I wish had existed when
I was in college.” We agree.

If you’re interested in the implications of big data and machine learning for busi-
nesses and society, consider Big Data, A Revolution That Will Transform How We Live,
Work, and Think by Viktor Mayer-Schönberger and Kenneth Cukier (Houghton Mifflin
Harcourt, 2013).

Online resources include the following:

■ www.predictiveanalyticstoday.com—For industry news
■ www.analyticbridge.com and its parent site, www.datasciencecentral.com
■ www.analyticsvidhya.com—Analytics news focused on learning
■ www.reddit.com/r/machinelearning—Machine-learning discussion
■ www.kaggle.com—Competitions, community, scripts, job board

http://www.predictiveanalyticstoday.com
http://www.analyticbridge.com
http://www.datasciencecentral.com
http://www.analyticsvidhya.com
http://www.reddit.com/r/machinelearning
http://www.kaggle.com
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Popular machine-learning

algorithms

Name Type Use
Linear/

nonlinear
Requires 

normalization

Linear 
regres-
sion

Regression Model a scalar target with one or more 
quantitative features. Although regression 
computes a linear combination, features 
can be transformed by nonlinear functions if 
relationships are known or can be guessed.

R: www.inside-r.org/r-doc/stats/lm 
Python: http://scikit-learn.org/stable/mod-
ules/generated/sklearn.linear_model.Line-
arRegression.html#sklearn.linear_model 
.LinearRegression

Linear Yes

Logistic 
regres-
sion

Classification Categorize observations based on quantita-
tive features; predict target class or proba-
bilities of target classes.

R: www.statmethods.net/advstats/glm.html
Python: http://scikit-learn.org/stable/
modules/generated/
sklearn.linear_model.LogisticRegres-
sion.html 

Linear Yes
232

http://www.inside-r.org/r-doc/stats/lm
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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Name Type Use
Linear/

nonlinear
Requires 

normalization

SVM Classifica-
tion/regres-
sion

Classification based on separation in high-
dimensional space. Predicts target classes. 
Target class probabilities require additional 
computation. Regression uses a subset 
of the data, and performance is highly data 
dependent.

R: https://cran.r-project.org/web/packages/
e1071/vignettes/svmdoc.pdf 
Python: http://scikit-learn.org/stable/mod-
ules/svm.html

Linear Yes

SVM with 
kernel

Classifica-
tion/regres-
sion

SVM with support for a variety of nonlinear 
models.

R: https://cran.r-project.org/web/packages/
e1071/vignettes/svmdoc.pdf 
Python: http://scikit-learn.org/stable/mod-
ules/svm.html

Nonlinear Yes

K-near-
est neigh-
bors

Classifica-
tion/regres-
sion

Targets are computed based on those 
of the training set that are “nearest” to 
the test examples via a distance formula 
(for example, Euclidean distance). For 
classification, training targets “vote.” 
For regression, they are averaged. Predic-
tions are based on a “local” subset of 
the data, but are highly accurate for some 
datasets.

R: https://cran.r-project.org/web/packages/
class/class.pdf 
Python: http://scikit-learn.org/stable/mod-
ules/generated/sklearn.neighbors.KNeigh-
borsClassifier.html 

Nonlinear Yes

Decision 
trees

Classifica-
tion/regres-
sion

Training data is recursively split into 
subsets based on attribute value tests, 
and decision trees that predict targets 
are derived. Produces understandable 
models, but random forest and boosting 
algorithms nearly always produce lower 
error rates.

R: www.statmethods.net/advstats/cart.html 
Python: http://scikit-learn.org/stable/mod-
ules/tree.html#tree 

Nonlinear No

https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf
https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf
https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
https://cran.r-project.org/web/packages/class/class.pdf
https://cran.r-project.org/web/packages/class/class.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
http://www.statmethods.net/advstats/cart.html
http://scikit-learn.org/stable/modules/tree.html#tree
http://scikit-learn.org/stable/modules/tree.html#tree
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Random 
forest

Classifica-
tion/regres-
sion

An “ensemble” of decision trees is used to 
produce a stronger prediction than a single 
decision tree. For classification, multiple 
decision trees “vote.” For regression, their 
results are averaged. 

R: https://cran.r-project.org/web/packages/
randomForest/randomForest.pdf 
Python: http://scikit-learn.org/stable/mod-
ules/generated/sklearn.ensemble.Random-
ForestClassifier.html 

Nonlinear No

Boosting Classifica-
tion/regres-
sion

For multitree methods, boosting algorithms 
reduce generalization error by adjusting 
weights to give greater weight to examples 
that are misclassified or (for regression) 
those with larger residuals.

R: https://cran.r-project.org/web/packages/
gbm/gbm.pdf 
https://cran.r-project.org/web/packages/
adabag/adabag.pdf 
Python: http://scikit-learn.org/stable/mod-
ules/generated/sklearn.ensemble.Gradient-
BoostingClassifier.html 

Nonlinear No

Naïve 
Bayes

Classification A simple, scalable classification algorithm 
used especially in text classification tasks 
(for example, spam-classification). It assumes 
independence between features (hence, 
naïve), which is rarely the case, but the 
algorithm works surprisingly well in specific 
cases. It utilizes the Bayes theorem, 
but is not “Bayesian” as used in the field 
of statistics.

R: https://cran.r-project.org/web/packages/
e1071/
Python: http://scikit-learn.org/stable/mod-
ules/classes.html#module-
sklearn.naive_bayes

Nonlinear Yes

Name Type Use
Linear/

nonlinear
Requires 

normalization

https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://cran.r-project.org/web/packages/gbm/gbm.pdf
https://cran.r-project.org/web/packages/gbm/gbm.pdf
https://cran.r-project.org/web/packages/gbm/gbm.pdf
https://cran.r-project.org/web/packages/adabag/adabag.pdf
https://cran.r-project.org/web/packages/adabag/adabag.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://cran.r-project.org/web/packages/e1071/
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://cran.r-project.org/web/packages/e1071/
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Neural 
network

Classifica-
tion/regres-
sion

Used to estimate unknown functions that are 
based on a large number of inputs, through 
the back-propagation algorithm. Generally 
more complex and computationally expen-
sive than other methods, but powerful for 
certain problems. The basis of many deep 
learning methods.

R: https://cran.r-project.org/web/packages/
neuralnet/neuralnet.pdf 
https://cran.r-project.org/web/packages/
nnet/nnet.pdf 
Python: http://scikit-learn.org/dev/modules/
neural_networks_supervised.html 
http://deeplearning.net/software/theano/

Nonlinear Yes

Vowpal 
Wabbit

Classifica-
tion/Regres-
sion

An online ML program developed by John 
Langford at Yahoo Research, now Microsoft. 
It incorporates various algorithms, including 
ordinary least squares and single-layer neu-
ral nets. As an online ML program, it doesn't 
require all data to fit in memory. It's known 
for fast processing of large datasets. 
Vowpal Wabbit has a unique input format and 
is generally run from a command line rather 
than through APIs. 
https://github.com/JohnLangford/
vowpal_wabbit/wiki 

XGBoost Classifica-
tion/Regres-
sion

A highly optimized and scalable version of 
the boosted decision trees algorithm.
https://xgboost.readthedocs.org/en/latest/ 

Name Type Use
Linear/

nonlinear
Requires 

normalization

https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
https://cran.r-project.org/web/packages/nnet/nnet.pdf
https://cran.r-project.org/web/packages/nnet/nnet.pdf
http://scikit-learn.org/dev/modules/neural_networks_supervised.html
http://scikit-learn.org/dev/modules/neural_networks_supervised.html
http://scikit-learn.org/dev/modules/neural_networks_supervised.html
http://deeplearning.net/software/theano/
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://xgboost.readthedocs.org/en/latest/
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